Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Испытание материалов на выносливость Содержание и задачи курса сопромата Техническая механика

Справочник сетевого инженера

Поддержка разных видов трафика

Компьютерные сети изначально предназначены для совместного доступа пользователя к ресурсам компьютеров: файлам, принтерам и т. п. Трафик, создаваемый этими традиционными службами компьютерных сетей, имеет свои особенности и существенно отличается от трафика сообщений в телефонных сетях или, например, в сетях кабельного телевидения. Однако 90-е годы стали годами проникновения в компьютерные сети графика мультимедийных данных, представляющих в цифровой форме речь и видеоизображение. Компьютерные сети стали использоваться для организации видеоконференций, обучения и развлечения на основе видеофильмов и т. п. Естественно, что для динамической передачи мультимедийного графика требуются иные алгоритмы и протоколы и, соответственно, другое оборудование.

Главной особенностью трафика, образующегося при динамической передаче голоса или изображения, является наличие жестких требований к синхронности передаваемых сообщений. Для качественного воспроизведения непрерывных процессов, которыми являются звуковые колебания или изменения интенсивности света в видеоизображении, необходимо получение измеренных и закодированных амплитуд сигналов с той же частотой, с которой они были измерены на передаю­щей стороне. При запаздывании сообщений будут наблюдаться искажения.

    В то же время трафик компьютерных данных характеризуется крайне неравномерной интенсивностью поступления сообщений в сеть при отсутствии жестких требований к синхронности доставки этих сообщений. Например, доступ пользователя, работающего с текстом на удаленном диске, порождает случайный поток сообщений между удаленным и локальным компьютерами, зависящий от действий пользователя по редактированию текста, причем задержки при доставке в определенных (и достаточно широких с компьютерной точки зрения) пределах мало влияют на качество обслуживания пользователя сети. Все алгоритмы компьютерной связи, соответствующие протоколы и коммуникационное оборудование были рассчитаны именно на такой «пульсирующий» характер трафика, поэтому необходимость передавать мультимедийный трафик требует внесения принципиальных изменений как в протоколы, так и оборудование. Сегодня практически все новые протоколы в той или иной степени предоставляют поддержку мультимедийного графика.

Особую сложность представляет совмещение в одной сети традиционного компьютерного и мультимедийного трафика. Передача исключительно мультимедийного трафика компьютерной сетью хотя и связана с определенными сложностями, но вызывает меньшие трудности. А вот случай сосуществования двух типов трафика с противоположными требованиями к качеству обслуживания является намного более сложной задачей. Обычно протоколы и оборудование компьютерных сетей относят мультимедийный трафик к факультативному, поэтому качество его обслуживания оставляет желать лучшего. Сегодня затрачиваются большие усилия по созданию сетей, которые не ущемляют интересы одного из типов графика. Наиболее близки к этой цели сети на основе технологии ATM, разработчики которой изначально учитывали случай сосуществования разных типов графика в одной сети.

Подсети. Маска подсети. Имена Как известно, IP-адрес состоит из двух иерархических уровней. Необходимость во введении третьего уровня иерархии — уровня подсетей — была продиктована возникновением дефицита номеров сетей и резким ростом таблиц маршрутизации маршрутизаторов в Internet. После введения уровня подсети номер устройства разделяется на две части — номер подсети и номер устройства в этой подсети

Маска подсети Если маршрутизаторы в сети Internet используют только сетевой префикс адреса получателя для передачи графика в организацию, то маршрутизаторы внутри частной сети организации используют расширенный сетевой префикс для передачи графика индивидуальным подсетям. Расширенным сетевым префиксом называют префикс сети и номер подсети. Так что схему на рис. 8.4 можно представить также следующим образом

Предположим, что организация получила сеть класса С 193.1.1.0 и ей необходимо сформировать шесть подсетей. Наибольшая подсеть должна поддерживать 25 устройств. На первом шаге определяется число бит, необходимых для выделения шести подсетей. Очевидно, необходимо выделить три бита (23=86). Так как организации выделены адреса класса С (префикс /24), то получаемый расширенный сетевой префикс равен /27 (24+3=27). Это соответствует маске подсети 255.255.255.224

С разработкой протоколов маршрутизации, переносящих в своих служебных сообщениях маску подсети (OSPF, IS-IS), стало возможным использование подсетей, все биты номеров которых установлены в единицу или ноль — вопреки Документу RFC 950. В результате производители позволяют настраивать подсети с такими номерами на портах своих маршрутизаторов. При этом, однако, нужно учитывать два обстоятельства: используемые в корпоративной сети протоколы маршрутизации, относящиеся к классу IGP, должны поддерживать маску подсети или расширенный сетевой префикс

Маска подсети переменной длины В 1987 году вышел документ RFC 1009, определяющий использование разных масок подсетей в одной сети, состоящей из большого количества подсетей. Так как в этом случае расширенные сетевые префиксы в различных подсетях имеют разную длину, говорят о масках подсетей переменной длины. Маску подсети переменной длины поддерживают современные протоколы маршрутизации, такие как OSPF и IS-IS (см. ниже). Сообщения этих протоколов переносят как адрес подсети, так и соответствующую ему маску.

Как видно, применение различных расширенных сетевых префиксов (/22 и /26) позволило получить две разные подсети, отличающиеся по числу поддерживаемых устройств. Маска подсети переменной длины позволяет администратору выделять подсети с необходимыми характеристиками. При этом созданные подсети можно со временем легко изменять. Общая схема такова: сначала сеть делится на подсети, затем некоторые из этих подсетей делятся на более мелкие подсети и т. д. То есть происходит рекурсия (дробление) подсетей.

Таблица маршрутизации содержит информацию, необходимую для передачи пакетов по информационной сети от отправителя к получателю. Рассмотрим пример простой таблицы маршрутизации. В этой таблице содержатся записи, типичные для таких протоколов маршрутизации, как RIP IP.

Методы маршрутизации информационных потоков Маршрутизаторы Довольно часто в компьютерной литературе дается следующее обобщенное определение маршрутизатора: маршрутизатор — это устройство сетевого уровня эталонной модели OSI, использующее одну или более метрик для определения оптимального пути передачи сетевого трафика на основании информации сетевого уровня. Из этого определения вытекает, что маршрутизатор, прежде всего, необходим для определения дальнейшего пути данных, посланных в большую и сложную сеть.

Оптимальность выбора маршрута является основным параметром алгоритма, что не требует пояснений. Алгоритмы маршрутизации должны быть просты в реализации и использовать как можно меньше ресурсов. Алгоритмы должны быть устойчивыми к отказам оборудования на первоначально выбранном маршруте, высоким нагрузкам и ошибкам в построении сети.

К третьей группе протоколов относятся протоколы политики (правил) маршрутизации. Эти протоколы наиболее эффективно решают задачу доставки получателю информации. Эта категория протоколов используется при маршрутизации в Internet и позволяет операторам получать информацию о маршрутизации от соседних операторов на основании специальных критериев. То есть в процессе обмена вырабатывается список разрешенных маршрутов (путей). Алгоритмы политики маршрутизации опираются на алгоритмы вектора расстояния, но информация о маршрутах базируется на списке операторов сети Internet. Примерами протоколов данной категории могут служить BGP и EGP.

Пакетом называется некоторый объем информации, который без разделения на более мелкие части, передается по информационной сети от источника к получателю. Таким образом, пакетами принято называть сообщения  сетевого уровня.  При коммутации пакетов все передаваемые пользователем сети сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Напомним, что сообщением называется логически завершенная порция данных - запрос на передачу файла, ответ на этот запрос, содержащий весь файл, и т. п. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт.

Управляемость

    Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети. В идеале средства управления сетями представляют собой систему, осуществляющую наблюдение, контроль и управление каждым элементом сети — от простейших до самых сложных устройств, при этом такая система рассматривает сеть как единое целое, а не как разрозненный набор отдельных устройств.

Хорошая система управления наблюдает за сетью и, обнаружив проблему, активизирует определенное действие, исправляет ситуацию и уведомляет администратора о том, что произошло и какие шаги предприняты. Одновременно с этим система управления должна накапливать данные, на основании которых можно планировать развитие сети. Наконец, система управления должна быть независима от производителя и обладать удобным интерфейсом, позволяющим выполнять все действия с одной консоли.

Решая тактические задачи, администраторы и технический персонал сталкиваются с ежедневными проблемами обеспечения работоспособности сети. Эти задачи требуют быстрого решения, обслуживающий сеть персонал должен оперативно реагировать на сообщения о неисправностях, поступающих от пользователей или автоматических средств управления сетью. Постепенно становятся заметны более общие проблемы производительности, конфигурирования сети, обработки сбоев и безопасности данных, требующие стратегического подхода, то есть планирования сети. Планирование, кроме этого, включает прогноз изменений требований пользователей к сети, вопросы применения новых приложений, новых сетевых технологий и т. п.

    Полезность системы управления особенно ярко проявляется в больших сетях: корпоративных или публичных глобальных. Без системы управления в таких сетях нужно присутствие квалифицированных специалистов по эксплуатации в каждом здании каждого города, где установлено оборудование сети, что в итоге приводит к необходимости содержания огромного штата обслуживающего персонала.

В настоящее время в области систем управления сетями много нерешенных проблем. Явно недостаточно действительно удобных, компактных и многопротокольных средств управления сетью. Большинство существующих средств вовсе не управляют сетью, а всего лишь осуществляют наблюдение за ее работой. Они следят за сетью, но не выполняют активных действий, если с сетью что-то произошло или может произойти. Мало масштабируемых систем, способных обслуживать как сети масштаба отдела, так и сети масштаба предприятия, — очень многие системы управляют только отдельными элементами сети и не анализируют способность сети выполнять качественную передачу данных между конечными пользователями сети.

Совместимость

Совместимость или интегрируемость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать различные операционные системы, поддерживающие разные стеки коммуникационных протоколов, и работать аппаратные средства и приложения от разных производителей. Сеть, состоящая из разнотипных элементов, называется неоднородной или гетерогенной, а если гетерогенная сеть работает без проблем, то она является интегрированной. Основной путь построения интегрированных сетей — использование модулей, выполненных в соответствии с открытыми стандартами и спецификациями.

Изучение маршрута между сетевыми соединениями с помощью утилиты tracert.

Tracert - это утилита трассировки маршрута. Она использует поле TTL (time-to-live, время жизни) пакета IP и сообщения об ошибках ICMP для определения маршрута от одного хоста до другого.

Утилита tracert может быть более содержательной и удобной, чем ping, особенно в тех случаях, когда удаленный хост недостижим. С помощью нее можно определить район проблем со связью (у Internet-провайдера, в опорной сети, в сети удаленного хоста) по тому, насколько далеко будет отслежен маршрут. Если возникли проблемы, то утилита выводит на экран звездочки (*), либо сообщения типа «Destination net unreachable», «Destination host unreachable», «Request time out», «Time Exeeded».

Утилита tracert работает следующим образом: посылается по 3 пробных эхо-пакета на каждый хост, через который проходит маршрут до удаленного хоста. На экран при этом выводится время ожидания ответа на каждый пакет (Его можно изменить с помощью параметра -w). Пакеты посылаются с различными величинами времени жизни. Каждый маршрутизатор, встречающийся по пути, перед перенаправлением пакета уменьшает величину TTL на единицу. Таким образом, время жизни является счетчиком точек промежуточной доставки (хопов). Когда время жизни пакета достигнет нуля, предполагается, что маршрутизатор пошлет в компьютер-источник сообщение ICMP “Time Exeeded” (Время истекло). Маршрут определяется путем посылки первого эхо-пакета с TTL=1. Затем TTL увеличивается на 1 в каждом последующем пакете до тех пор, пока пакет не достигнет удаленного хоста, либо будет достигнута максимально возможная величина TTL (по умолчанию 30, задается с помощью параметра -h).

Маршрут определяется путем изучения сообщений ICMP, которые присылаются обратно промежуточными маршрутизаторами.

Примечание: некоторые маршрутизаторы просто молча уничтожают пакеты с истекшим TTL и не будут видны утилите tracert.

Синтаксис:

 tracert [-d] [-h maximum_hops] [-j host-list] [-w timeout] имя_целевого_хоста

Параметры:

-d указывает, что не нужно распознавать адреса для имен хостов;

-h maximum_hops указывает максимальное число хопов для того, чтобы искать цель;

-j host-list указывает нежесткую статическую маршрутизацию в соответствии с host-list;

-w timeout  указывает, что нужно ожидать ответ на каждый эхо-пакет заданное число мсек.


На главную