Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Испытание материалов на выносливость Содержание и задачи курса сопромата Техническая механика

Справочник сетевого инженера

Кабельные системы для скоростной передачи данных

С ростом спроса на более быстрые и сложные сети растет и рынок кабельной продукции. Кабели с высокочастотными характеристиками представляют приблизительно 20% рынка и их доля будет расти с повышением спроса.

Спрос на высокоскоростные приложения, способные к работе в стандартных кабельных системах категории 5, удовлетворяется с помощью мегабитных приложений, таких как, например, АТМ 155 Мбит/с и Gigabit Ethernet (lOOOBaseT), использующих для передачи сигналов все четыре пары. Для обеспечения устойчивой работы подобных систем в последнее время на рынок стали поставляться продукты с частотными характеристиками, расширенными до 350 МГц.

Многие производители предлагают кабельные продукты с расширенными частотными характеристиками, прошедшие тестирование на частотах свыше 100 МГц. Важно помнить о том факте, что не существует признанного промышленностью стандарта для рабочих характеристик кабеля UTP 100 0м на частотах свыше 100 МГц.

Разъем категории 5 будет одинаково хорошо работать как при передаче сигнала по двум, так и по четырем парам, но поскольку при увеличении числа активных пар перекрестные помехи возрастают, только кабельные системы категории 5 с дополнительным частотным "запасом" по рабочим характеристикам могут надежно поддерживать высокоскоростные приложения передачи данных. Самым простым способом определения способности определенного продукта поддерживать приложения "расширенной" категории 5 -это анализ данных, полученных при тестировании рабочих характеристик в высокочастотных областях, например, в области до 350 МГц.

Большинство данных тестирования до 350 МГц приводятся только для кабельной продукции. Эти данные не дают полной информации о той производительности, которую можно от них ожидать в реальных условиях линии или канала. Единственно, что можно принимать в расчет при определении реальной производительности смонтированной системы, это то, как кабель и коннекторы будут вести себя, будучи соединенными вместе. Это именно те данные тестирования, на которые следует обращать внимание.

Существует заблуждение о том, что система, обладающая характеристиками до 350 МГц, обеспечивает рабочую полосу частот аналогичной величины. Хотя такая система и обладает частотными характеристиками, лучшими по сравнению со стандартной категорией 5, реальные рабочие частоты всегда ниже 350 МГц, и отличаются у каждой конкретной комбинации разъемов и кабеля. Таким образом если сравнивать полосу пропускания современных кабелей и кабелей следующего поколения (категории 6), то разница между ними будет незначительной - всего лишь двукратной. Главные усовершенствования в кабельных системах связаны с переходом на использование всех четырех пар кабеля и дуплексную передачу по каждой из них. В связи с этим возникают новые технические требования налагаемые на компоненты структурированных кабельных систем. В настоящее время комитет IEEE 802.3, работающий над стандартами технологии Ethernet, разрабатывает ее гигабитную версию. Согласно этому стандарту, Gigabit Ethernet должна работать на линиях класса D, собранных из элементов категории 5 с использованием всех четырех пар кабеля. Более того, для достижения гигабитной скорости по каждой паре сигналы следует передавать в обоих направлениях одновременно. Вот это и будет самое существенное отличие, ведь до сих пор все сетевые приложения использовали только две пары - одну для передачи, а другую для приема сигнала.

Возникновение понятия открытости - в ряде технических реализаций возможность организации взаимодействия с другими аппаратно-программными средствами вообще отсутствовала. - разнородность реализации одной вычислительной структуры, изготовленной различными производителями, также требовала применения специальных ограничений, либо разработки дополнительных программных и (или) технических средств для интеграции. - разнородность интерфейсов общения в системе "человек-машина" требовала постоянного переобучения кадров.

В различных областях проектирования и производства технологические нововведения зарождаются и приобретают значение в процессе изменения масштабов создаваемых объектов. При этом основную роль часто играют не физические масштабы объектов, но масштабы сложности их функционирования и разработки. В современных условиях технические и технологические объекты, например, энергетические комплексы и сети, объекты инфраструктуры больших городов, аэрокосмические объекты и комплексы, имеют такие масштабы сложности функционирования и разработки, что их разработка и эксплуатация невозможна без специальных информационных систем.

Модели и структуры информационных сетей Топология Способ соединения компьютеров в сети называется топологией. При выборе конкретного типа сети важно учитывать ее топологию, поэтому, представим важнейшие топологии сетей. Основными сетевыми топологиями являются линейная (шинная), звездообразная и кольцевая. Например, в конфигурации сети ArcNet используется одновременно и линейная, и звездообразная топология. Сети Token Ring физически выглядят как звезда, но логически их пакеты передаются по кольцу. Передача данных в Ethernet происходит по линейной шине, так что все станции видят сигнал одновременно.

Информационные ресурсы сетей Передающая среда Передающие физические среды, используемые в структурированных кабельных системах. Коаксиальные передающие среды Коаксиальный кабель является наиболее распространенной средой, используемой для передачи радиочастотных сигналов. Конструкционно он состоит из одножильного или многожильного проводника, окруженного диэлектрическим материалом, как правило, плотным или мягким пенополимером. Диэлектрик помещается в непрерывный алюминиевый экран, ламинированный полистером, а затем в луженую медную сетку. Вся конструкция помещается в оболочку из поливинилхлоридного или огнеупорного полимерного материала.

Сбалансированность пары Система с повышенной пропускной способностью должна быть менее чувствительной к внешним помехам. Чтобы обеспечить правильную передачу, степень симметричности пар должна быть очень высокой. Параметры, которые служат мерой симметричности пар, называются потерями на продольное преобразование (LCL) и потерями на продольно-поперечное преобразование (LCTL) и также измеряются в децибелах. Чем больше их значение, тем лучше сбалансирован кабель. Например, если LCL = 40 дБ, внешнее паразитное напряжение 10 В создает в паре дифференциальное напряжение шума, равное 0,1 В. Им уже нельзя пренебрегать, хотя кабель, сбалансированный на 40 дБ, считается хорошим.

Физические характеристики волоконно-оптических передающих сред Основные элементы оптического волокна Ядро – светопередающая часть волокна, изготавливаемая либо из стекла, либо из пластика. Чем больше диаметр ядра, тем большее количество света может быть передано по волокну.

Полоса пропускания (ширина спектра) - это мера способности волокна передавать определенные объемы информации в единицу времени. Чем шире полоса, тем выше информационная емкость волокна. Полоса выражается в МГц-км. Например, по волокну с полосой 200 МГц-км можно передавать данные с частотой 200 МГц на расстояния до 1 км или с частотой 100 МГц на расстояния до 2 км. Благодаря сравнительно большой полосе пропускания, волокна могут передавать значительные объемы информации. Одно волокно с градиентным показателем преломления может с легкостью передавать 500 миллионов бит информации в секунду. Тем не менее, для всех типов волокон существуют ограничения ширины полосы, зависящие от свойств волокна и типа используемого источника оптической мощности.

Существует четыре основные разновидности кадров Ethernet

Пакет - это данные, сформированные каким-либо протоколом (например, IPX). Максимальная длина пакета зависит от загрузки сети. При большой загрузке сети, когда многие станции имеют данные для передачи, интервал времени между получениями маркера станцией будет увеличиваться. В такой ситуации станции автоматически уменьшают максимальный размер пакета, поэтому каждая станция будет передавать свои данные за более короткий промежуток времени и, следовательно, уменьшится время получения (ожидания) маркера или время доступа станции к среде. Когда загрузка сети уменьшается, максимальный размер пакета динамически увеличивается. Этот механизм позволяет устойчиво работать сети Token Ring при пиковых нагрузках.

В сети ARCNet очерёдность передачи данных определяется физическими адресами станций (ID). Первой является станция с наибольшим адресом, затем следует станция с наименьшим адресом, далее - в порядке возрастания адресов. Каждая станция знает адрес следующей за ней станции (NextID или NID). Этот адрес определяется при выполнении процедуры реконфигурации системы.

Приложение-клиент на удаленном компьютере получает доступ к данным, хранимым на сервере приложений. Однако вместо всей базы данных на Ваш компьютер с сервера загружаются только результаты запроса. Например, Вы можете получить список студентов, родившихся в ноябре. Почтовые серверы управляют передачей электронных сообщений между пользователями сети

Дуплексная передача

При передаче данных с помощью технологии Gigabit Ethernet со скоростью 1000 Мбит/с поток расщепляется на четыре части. На каждую витую пару приходится по 250 Мбит/с. На обоих концах линии происходят передача и прием сигналов. Это не является чем-то новым, ведь обычный телефон работает всего по одной паре, тем не менее собеседники могут говорить друг с другом одновременно.

Перекрестные наводки

Ныне действующие приложения передают сигнал по одной паре, а принимают ответный по другой. В этом случае существенна только одна проблема, связанная с перекрестными наводками, - значительная разница между высоким уровнем исходящего и низким уровнем приходящего сигналов на одном конце кабеля. Важный параметр, который характеризует этот вид помех, - это перекрестные наводки на ближнем конце линии передачи (NEXT). В новых протоколах значимость параметра NEXT сохраняется, но, как уже упоминалось, поскольку применяется дуплексный способ передачи, то придется учитывать и наводки от передатчика, расположенного на дальнем конце линии передачи, - перекрестные наводки на дальнем конце (FEXT).

Суммарные наводки

При одновременном использовании четырех пар кабеля приходится оценивать влияние трех пар на четвертую, причем не только на ближнем, но и дальнем конце линии. В этом случае появляется понятие "суммарная наводка" (Global crosstalk - GTX). Она равна сумме наведенных шумов от всех пар на обоих концах линии. GTX измеряется в децибелах.

Время прохождения сигнала

Как уже говорилось выше, весь поток данных расщепляется на четыре части. Если время прохождения пакетов данных по различным парам заметно отличается от номинального значения, то пакет, посланный по первой паре, может прийти к месту назначения вторым или даже третьим по порядку. В этом случае восстановить исходный сигнал будет трудно. Конструкция нового кабеля (категории 6) должна учитывать возникновение проблемы такого рода.

«Третий путь»

Кроме «частной собственности» и «открытого спектра» возможен и вариант «третьего пути», т.е. сосуществования двух систем.

На сегодня мировая практика предлагает несколько способов обеспечения такого сосуществования.

Во-первых, сосуществование лицензируемых и нелицензируемых диапазонов частот (unlicensed, open spectrum). В общемировой таблице распределения радиочастот диапазоны 2400–2483,5 МГц и 5725–5875 МГц отведены для использования "высокочастотными установками, предназначенными для промышленных, научных и медицинских целей" (Industrial, Scientific, Medical – ISM). Эти установки были выделены по тому признаку, что все они создают маломощный широкополосный сигнал. Позже, когда началось развитие широкополосных систем передачи данных, производители устройств связи быстро освоили ISM-диапазоны и, в частности, стали выпускать для них оборудование стандарта 802.11 (RadioEthernet), предназначенного для организации беспроводных коммуникаций на ограниченной территории в режиме локальной сети. Таким образом сложилась практика, в соответствии с которой WLAN работают именно в диапазонах 2,4 и 5 ГГц.

Во многих странах использование ISM-диапазонов широкополосными средствами связи официально является безлицензионным, но при этом на устройства накладывается ограничение по мощности излучения (так, в США она может быть не больше 1 Вт, в Западной Европе – не больше 100 мВт). Благодаря этому сети, даже если они находятся рядом, не мешают (или почти не мешают) друг другу. Отсутствие необходимости получать разрешение на частоты существенно упростило процесс развертывания сетей, и в результате WLAN получили на Западе широчайшее распространение.

В России полностью безлицензионного использования радиодиапазонов до самого недавнего времени не было вообще. Но в марте 2003 года ГКРЧ (Государственная комиссия по радиочастотам) разрешила его для аппаратуры, поддерживающей стандарт Bluetooth (она также работает в диапазоне 2,4 ГГц), с максимальной мощностью 2,5 мВт – расстояние между устройствами при этом не может превышать 10 м. Более мощная аппаратура этого же стандарта (на которую разрешение не распространяется) позволяет связываться на расстояниях до 30 м.


На главную