Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Курсовая по электротехнике Лабораторная работа Трехфазные цепи Лабораторные работы по физике

Расчет электротехнических цепей Лабораторная работа

ЭЛЕКТРОМАГНИТНЫЕ УСТРОЙСТВА

ТРАНСФОРМАТОРЫ

Назначение и принцип действия трансформатора

 Трансформатор представляет собой статический электромагнитный аппарат, предназначенный для преобразования переменного тока одного напряжения в переменный ток другого напряжения той же частоты. Трансформатор имеет не менее двух обмоток, у которых есть общий магнитопровод и которые электрически изолированы друг от друга.

 Обмотки размещаются на магнитопроводе, собранном из листов электротехнической стали (рис. 9.1). Магнитопровод отсутствует лишь в воздушных трансформаторах, которые применяются при частотах около 20 кГц и выше, когда магнитопровод почти не намагничивается из-за увеличения вихревых токов.

 Обмотка трансформатора, соединенная с источником питания, называется первичной, а обмотка, к которой подключается потребитель электроэнергии, называется вторичной. Параметры, относящиеся к первичной обмотке, обозначаются индексом 1, например, , , , относящиеся к вторичной обмотке – обозначают с индексом 2.

 Различают однофазные и трехфазные трансформаторы.

 На щитке трансформатора указывают его номинальное напряжение, полную мощность, токи, напряжение короткого замыкания, число фаз, частоту, схему соединения, режим работы и способ охлаждения.

В зависимости от напряжения различают обмотку высшего напряжения (ВН) и обмотку низшего напряжения (НН). По способу охлаждения трансформаторы делят на сухие и масляные. На рис. 9.2 показан трехфазный трансформатор масляный с трубчатым баком, где 1 – магнитопровод; 2 – обмотка НН; 3 – обмотка ВН; 4 – выводы обмотки ВН; 5 – выводы обмотки НН; 6 – трубчатый бак; 7 – кран для заполнения маслом; 8 – выхлопная труба для газов; 9 – газовые реле; 10 – расширитель масла; 11 – кран для спуска масла.

 Если первичное напряжение  больше вторичного , трансформатор называют понижающим, если  – повышающим.

Принцип действия трансформатора основан на явлении электромагнитной индукции. Под воздействием переменного тока первичная обмотка создает в магнитопроводе переменный магнитный поток

 (9.1)

Рис. 9.2

который пронизывает обмотки и индуктирует в них ЭДС

  (9.2)

где   – амплитудные значения ЭДС.

 Разделив максимальные значения ЭДС на , получим действующее значение ЭДС в обмотках

.  (9.3)

Из (9.2) и (9.3) следует, что ЭДС обмоток отстают по фазе от магнитного потока на 90°, и пропорциональны числу витков.

 Соотношение ЭДС обмоток называется коэффициентом трансформации

.  (9.4)

 Если , то вторичная ЭДС меньше первичной и трансформатор называется понижающим, при  – трансформатор повышающий.

 Применяют и другое определение для коэффициента трансформации: отношение номинального высшего напряжения трансформатора к номинальному низшему напряжению. В этом случае коэффициент трансформации всегда больше единицы: .

  Так как во вторичной обмотке индуктируется ЭДС, то при подключении нагрузки к ее выводам в контуре обмотка-нагрузка протекает ток и выделяется электрическая энергия. Таким образом, с помощью магнитной связи поток электрической энергии передается из первичной цепи во вторичную. В этом и состоит принцип работы трансформаторов.

  Заметим, что положительные направления напряжения на рис. 9.1 показаны стрелкой от точки с высшим потенциалом к точке с низшим потенциалом, первичная обмотка рассматривается как приемник, вторичная – как источник электрической энергии.

Основные соотношения в идеальном трансформаторе

 Идеальным трансформатором называют трансформатор, у которого активное сопротивление обмоток равно нулю, отсутствуют магнитные потоки рассеяния, потери мощности в магнитопроводе равны нулю. При таких допущениях схема трансформатора и векторная диаграмма показаны на рис. 9.3. В режиме холостого хода ток вторичной обмотки равен нулю: , а ток и МДС первичной обмотки равны  и .

 Уравнение электрического равновесия выражается равенствами

или   (9.5)

 В режиме нагрузки ток вторичной обмотки оказывает размагничивающее действие и геометрическая сумма МДС обмоток равна результирующей МДС (рис. 9.3 б)


или . (9.6)

 Соотношение (9.5) справедливо как для холостого тока, так и при нагрузке. Следовательно, при  магнитный поток  и результирующая МДС (9.6) также постоянна () независимо от нагрузки. Так как , то возрастающий ток нагрузки  автоматически приводит к увеличению тока в первичной цепи трансформатора за счет ЭДС самоиндукции первичной обмотки.

  Так как ток холостого хода мал и не превышает 5 % от номинального, то

Отсюда

.

Следовательно, в идеальном трансформаторе отношение токов обмоток обратно пропорционально их напряжениям. Это соотношение справедливо при нагрузках, близких к номинальным и неприменимо в режиме, близком к холостому ходу.

Векторная диаграмма трансформатора


В реальном трансформаторе в отличие от идеального учитываются активные сопротивления обмоток, магнитные потоки рассеяния обмоток и потери мощности в стали. На рис. 9.4 активные сопротивления  и  и индуктивные

Рис. 9.4

сопротивления  и  от потоков рассеяния выделены отдельно, а обмотки показаны идеальными без этих сопротивлений. Согласно второму закону Кирхгофа уравнения для первичных и вторичных цепей в комплексной форме имеют вид

 (9.7)

Этим уравнениям соответствует векторная диаграмма (рис. 9.5), построенная для активно-индуктивной нагрузки . Из анализа диаграммы при переменной нагрузке следует, что с увеличением вторичного тока увеличиваются ток первичной обмотки и коэффициент мощности.

 

9.4. Схема замещения трансформатора

 Электрические цепи с трансформаторами сложно рассчитывать из-за магнитной связи между обмотками. Поэтому трансформатор представляют схемой замещения, в которой магнитная связь заменяется электрической цепью. С этой целью обе обмотки «приводят» к одному числу витков, обычно к числу витков первичной обмотки. Приведенные параметры вторичной цепи обозначают буквами со штрихом.

 Применение схемы замещения трансформатора предполагает, что мощности:

передаваемая во вторичную цепь

  (9.8) 

отдаваемая приемнику

  (9.9) 

затрачиваемая на нагрев обмотки

  (9.10)

не изменяются, а углы сдвига  и  и соотношение между индуктивными и активными сопротивлениями обмоток

 . (9.11)

Так как , то

.  (9.12)

Из (9.8) и (9.12) следует

.  (9.13)

Совместное решение (9.10, 9.11, 9.12) дает

.  (9.14)

Равенство ЭДС первичной и вторичной обмоток позволяет объединить их электрические цепи в одну цепь (рис. 9.6). Этот участок цепи называют ветвью намагничивания. В ней  – активное сопротивление, учитывающее

 


Рис. 9.6

 потери мощности в стали, – реактивное сопротивление, обусловленное основным магнитным потоком. В силу равенства  на векторной диаграмме (рис. 9.7) показаны не МДС, а токи

 . (9.15)

Если пренебречь током холостого хода  и удалить из схемы (рис. 9.6) ветвь намагничивания, то получим упрощенную схему замещения (рис. 9.8 а), а с учетом   и  – схему (рис. 9.8 б).


Упрощенной схеме замещения соответствует векторная диаграмма на рис. 9.9. Такую схему используют при нагрузке, близкой к номинальной.


Решение задачи по теме «Двигатели постоянного тока»