Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Курсовая по электротехнике Лабораторная работа Трехфазные цепи Лабораторные работы по физике

Расчет электротехнических цепей Лабораторная работа

Синхронные машины

 Синхронными машинами называют электрические машины переменного тока, у которых частота вращения ротора находится в строго постоянном соотношении с частотой тока электрической сети.

 Трехфазные синхронные генераторы являются основными источниками электрической энергии. Первичными двигателями для них являются паровые или гидравлические турбины. По этому признаку генераторы называют турбогенераторами и гидрогенераторами. На автономных электростанциях синхронные генераторы имеют небольшую мощность и приводятся во вращение дизельными двигателями, газовыми турбинами или от ветроколеса.

К преимуществам синхронных генераторов следует отнести:

 – способность вырабатывать как активную, так и реактивную мощность (с возможностью ее регулирования);

 – возможность регулирования выходного напряжения;

 – возможность работы как с сетью, так и в автономном режимах без применения каких-либо сложных дополнительных устройств;

  – высокий КПД.

 Синхронные двигатели имеют постоянную частоту вращения и поэтому применяются там, где не требуется регулирование частоты или она должна быть постоянной. Мощность синхронных двигателей составляет десятки, сотни и тысячи киловатт на крупных металлургических заводах, в шахтах и других предприятиях. Имеются также синхронные микродвигатели мощностью от долей ватта до десятков ватт, используемых в схемах автоматики. Синхронная машина, работающая в режиме генератора или двигателя, может служить источником реактивной мощности. Специально предназначенный для этих целей ненагруженный активной мощностью двигатель называется синхронным компенсатором. 

Устройство синхронной машины

 Синхронная машина состоит из двух основных частей: неподвижного статора, выполняющего функции якоря, и вращающегося ротора, служащего индуктором.

 Статор, так же как у асинхронный машины, представляет собой полый цилиндр, набранный из листов электротехнической стали со штампованными на внутренней поверхности пазами, в которые укладывается трехфазная обмотка.

 Ротор представляет собой электромагнит, обмотка которого питается постоянным током через два изолированных контактных кольца, вращающихся вместе с ротором. Постоянный ток подводится к ротору через неподвижные щетки, скользящие по контактным кольцам.

 Принцип получения трехфазной системы ЭДС был рассмотрен в главе «Трехфазные цепи».

 Конструктивно различают два типа роторов: явнополюсный
(рис. 11.18 а) и неявнополюсный (рис. 11.18 б).

 Явнополюсный ротор, имеющий выступающие полюсы, применяют у машин с частотой вращения до 1000, 1500 об/мин. Неявнополюсный ротор, имеющий вид цилиндра, применяют при скоростях 1500 и 3000 об/мин.

 

11.17. Холостой ход синхронного генератора

Рис. 11.19

 При холостом ходе обмотка якоря (статора) разомкнута и магнитное поле машины создается только обмоткой возбуждения ротора (рис. 11.19). Форма наконечников полюсов ротора выполняется такой, чтобы распределение магнитной индукции в воздушном зазоре было близким к синусоидальному. Если выполнить распределенную обмотку статора с укороченным шагом и соединенной ее в звезду, наведенная в каждой фазной обмотке ЭДС будет изменяться по синусоидальному закону. Ее действующее значение 

  , (11.49)

Рис. 11.20

где  – обмоточный коэффициент;  – число витков одной фазы обмотки статора;  – частота синусоидальных ЭДС;  – число пар полюсов; – максимальный магнитный поток полюса ротора;  – синхронная частота вращения. Согласно (11.49) ЭДС статора при неизменной частоте пропорциональна потоку. Изменяя ток возбуждения, можно регулировать магнитный поток и ЭДС генератора.

 Зависимость  при  называется характеристикой холостого хода (рис. 11.20). Она применяется при расчете других характеристик и анализе режимов работы синхронных генераторов и двигателей.

Реакция якоря синхронной машины

 В машине, работающей под нагрузкой, магнитное поле создается в отличие от холостого хода не только в роторе, но и МДС токов статора. Эти МДС, вращаясь с одной и той же синхронной частотой, взаимодействуют между собой и образуют результирующее вращающееся магнитное поле машины. Воздействие МДС статора на магнитное поле машины называется реакцией якоря.

 Рассмотрим реакцию якоря на примере двухполюсного синхронного генератора с явновыраженными полюсами. На рис. 11.21 каждая фаза обмотки изображена в виде одного витка (А – Х, В – Y, С – Z), северный полюс ротора обозначен буквой N, южный – буквой S, магнитные линии этого поля не показаны.

  а) б) в)

Рис. 11.21

 Рис. 11.21 а поясняет реакцию якоря при активной нагрузке, когда угол сдвига по фазе  между ЭДС  и током  равен нулю. В этом положении ЭДС и ток фазы А максимальны, а в фазах В и С равны половине от максимальных значений и противоположны по знаку (направление токов в верхней половине обмотки статора показано крестиками, в нижней – точками). Этим направлениям токов соответствует магнитное поле реакции якоря, основные линии которого направлены поперек оси полюсов ротора. Они размагничивают набегающий край полюса и намагничивают сбегающий. При этом результирующий магнитный поток генератора  поворачивается относительно потока ротора  на некоторый угол   в направлении, противоположном направлению вращения ротора. Следовательно, при активной нагрузке (= 0) реакция якоря синхронной машины является чисто поперечной.

 Рис. 11.21 б соответствует фазовому сдвигу = 90°. В этом случае максимум тока в фазе А наступает в момент, когда ротор повернется на 90° по часовой стрелке. Ориентация потока реакция якоря осталась такой же, как на рис. 11.21 а, но теперь этот поток направлен навстречу потоку ротора по его продольной оси, т.е. при отстающем токе и = 90° реакция якоря действует по продольной оси и является по отношению к полю возбуждения размагничивающей.

 Рис. 11.21 в соответствует опережающему току  относительно ЭДС  на угол = –90°. В этом случае максимум тока в фазе А наступает по сравнению с рис. 11.21 а на четверть периода раньше, когда ротор занимает положение, повернутое на 90° против вращения, т.е. при опережающем токе и –90° реакция якоря действует по продольной оси и является по отношению к полю возбуждения намагничивающей.

В общем случае, когда  0 и 90°, ток  можно разложить на составляющие:

по продольной оси  ; (11.50)

 

по поперечной оси  . (11.51)

 Продольная составляющая тока якоря создает продольную реакцию якоря, а поперечная – поперечную реакцию якоря. Угол считается положительным, когда ток  отстает от ЭДС .

 При работе синхронной машины в режиме двигателя ток в статоре имеет противоположное направление по сравнению с режимом генератора. Поэтому при = 0 ось результирующего потока оказывается повернутой относительно потока ротора на угол   по направлению вращения ротора. При   реакция якоря является продольной и намагничивающей, а при  – продольной и размагничивающей.

 Сравнение реакции якоря явнополюсных и неявнополюсных машин показывает, что принципиально они отличаются тем, что у неявнополюсных машин воздушный зазор почти одинаковый вдоль продольной и поперечной осей ротора. Поэтому и потоки реакции якоря по осям при одинаковых токах статора практически равны. У явнополюсных машин воздушный зазор вдоль поперечной оси во много раз больше, чем вдоль продольной оси. Поэтому при равных составляющих МДС якоря вдоль продольной и поперечной осей магнитный поток реакции якоря вдоль поперечной оси значительно меньше и составляет, примерно, 60 % от потока вдоль продольной оси.

Индуктивное сопротивление синхронной машины

 Результирующий магнитный поток машины условно можно разделить на три составляющие: основной магнитный поток , поток рассеяния  и поток реакции якоря . Основной магнитный поток   наводит в обмотке статора ЭДС . Эта ЭДС представлена характеристикой холостого хода (рис. 11.20). Потоки  и  создаются током статора и пропорциональны ему. В обмотке статора эти потоки наводят ЭДС самоиндукции

 ,

где  – индуктивность рассеяния и индуктивность реакции якоря.

 В расчетах ЭДС  и  учитываются как падения напряжений на индуктивном сопротивлении рассеяния  и на индуктивном сопротивлении реакции якоря . Сумму сопротивлений  называют синхронным индуктивным сопротивлением. Такое определение соответствует неявнополюсным машинам. Для явнополюсных машин этот параметр разделяют по осям и различают индексами – продольное синхронное индуктивное сопротивление , поперечное синхронное индуктивное сопротивление , причем .

 Синхронное индуктивное сопротивление в сотни раз больше активного сопротивления обмотки статора. В дальнейшем будем считать R = 0 и использовать параметр .


Решение задачи по теме «Двигатели постоянного тока»