Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Курсовая по электротехнике Резонанс напряжений Методы расчета сложных цепей Метод контурных токов Метод двух узлов Метод эквивалентного генератора Расчет цепей при наличии взаимной индуктивности Несинусоидальные токи Трехфазные цепи

Методы расчета электрических цепей в курсовой по электротехнике

Трехфазные цепи

В предыдущей главе рассматривалась работа электрических цепей, питающихся от однофазных синусоидальных источников тока или напряжения. Наряду с однофазными источниками существуют источники энергии, количество фаз у которых составляет два, три, четыре и т.д., и которые характеризуются тем, что ЭДС этих фаз имеют одинаковую частоту, но сдвинуты друг относительно друга на некоторую одинаковую фазу. Такие генераторы называются многофазными, а электрические цепи с такими источниками – многофазными.

Трехфазный генератор

Среди всего многообразия многофазных источников трехфазный получил наибольшее практическое применение. В связи с этим основные исследования многофазных цепей будем проводить на примере трехфазных. Рассмотрим вопрос реализации трехфазного источника, которым является трехфазный генератор.

 Рис.4.1. Трехфазный генератор

В целях упрощения понимания принципа работы генератора обмотки представлены одним витком. В качестве ротора генератора выбран постоянный магнит. Каждая из обмоток имеет начало – клеммы А, В, С и конец – Х, Y, Z. Обмотки в пространстве сдвинуты на 120° друг относительно друга. Из чего следует, что максимумы ЭДС в них достигаются в разные моменты времени, отстоящие друг от друга на одну треть периода T = 2p / w, где w - угловая частота вращения ротора.

Последовательность, в которой ЭДС достигают максимума в соответствующих фазах, носит название порядка чередования фаз. Прямым порядком чередования фаз называют последовательность, при которой фаза B отстает от фазы А на T/3, и фаза С отстает от фазы В на T/3 – т.е. А, В, С. На рис.4.2 изображен график мгновенных значений ЭДС для прямого порядка чередования фаз. Изменение направления вращения ротора на противоположное меняет эту последовательность чередования фаз, и она станет уже А, С, В.

Рис.4.2. Графики мгновенных ЭДС фаз А, B, С

eА=Emsin(wt + p/2);

eВ=Emsin(wt + p/2 - 2p/3); 89(4.1)

eС=Emsin(wt + p/2 - 2p/3 - 2p/3).

Поскольку ЭДС каждой фазы генератора синусоидальна, то им в соответствие можно на комплексной плоскости построить векторы фазных ЭДС  (рис.4.3).

Рис.4.3. Векторная диаграмма фазных ЭДС

Записать компонентные уравнения ветвей связи

Компонентные уравнения (уравнения ветвей) представляют собой математические модели соответствующих ветвей и выражают ток и напряжение каждой ветви через параметры элементов этой ветви. Число таких уравнений равно числу ветвей, а вид каждого из них зависит только от состава ветви, т.е. от входящих в нее идеализированных двухполюсных элементов.

Рассмотрим компонентные уравнения для ветвей с идеализированными элементами.

Уравнения, составленные на основании закона Ома:

 или , (9)

где  - проводимость;

 (напряжение – разность потенциалов между точками участка цепи),

представляют собой компонентные уравнения ветви, содержащей один идеализированный пассивный элемент – сопротивление:

Пусть ток течет от точки 1 к точке 2 (от более высокого потенциала к более низкому). Следовательно, потенциал точки 1 (φ1) выше потенциала точки 2 (φ2) на величину, равную произведению тока I на сопротивление R:

. (10)

В соответствии с определением (под напряжением, на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка), напряжение между точками 1 и 2.

Следовательно, напряжение на сопротивлении равно произведению тока, протекающего по сопротивлению, на величину этого сопротивления . (12)


Методы расчета электрических цепей в курсовой по электротехнике