Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Курсовая по электротехнике Резонанс напряжений Методы расчета сложных цепей Метод контурных токов Метод двух узлов Метод эквивалентного генератора Расчет цепей при наличии взаимной индуктивности Несинусоидальные токи Трехфазные цепи

Методы расчета электрических цепей в курсовой по электротехнике

Режимы работы трехфазных цепей

Соединение «звезда-звезда» с нулевым проводом и без нулевого провода

Поскольку трехфазные цепи являются совокупностью однофазных цепей, то для их расчета используются все рассмотренные методы, в том числе и комплексный метод расчета. А значит расчет трехфазных цепей можно иллюстрировать построением векторных диаграмм токов нагрузки и топографических диаграмм напряжений.

Наиболее рациональным методом расчета цепи может считаться метод двух узлов. Для выбранных положительных направлений напряжений и токов на схеме (рис.4.8) составим соответствующую систему уравнений для расчета токов

  94(4.6)

 ; 95(4.7)

.  96(4.8)

Рис.4.8. Соединение фаз генератора и приемника
по схеме «четырехпроводная звезда»

1. Симметричная нагрузка

Нагрузка считается симметричной, если комплексные сопротивления ее фаз равны Za = Zb = Zc.

а) четырехпроводная звезда

Для простоты в качестве сопротивлений фаз нагрузки будем рассматривать активные сопротивления (Za = Zb = Zc = Zф = Rф). Наличие нулевого провода делает одинаковыми потенциалы узлов N и n (YN = ¥), значит UnN = 0. При этом фазные токи равны, а фазные напряжения на нагрузке будут полностью повторять фазные напряжения генератора. Для фазы А:

.

Аналогично для фаз В и С:

;

Исходя из сказанного, построим топографическую диаграмму фазных напряжений и векторную диаграмму токов (рис.4.9).

б) трехпроводная звезда

ZN = ¥; YN = 0;

.

Поэтому, как и в четырехпроводной схеме, фазы приемника работают независимо друг от друга и нулевой провод не нужен. Диаграмма в данном случае будет абсолютно той же самой.

Рис.4.9. Векторная диаграмма для симметричной нагрузки
в трех- и четырехпроводной схеме

Компонентные уравнения в этом случае имеют вид:

. (39)

Применяя вышеизложенную теорию, составим для наших данных ветви и их компонентные уравнения.

Последовательно рассмотрим каждую из ветвей схемы и запишем компонентное уравнение каждой ветви.

Ветвь 1: Дано:

 

В этой ветви сопротивление и источник тока отсутствуют, включен только идеальный источник ЭДС (таблица 1, пункт 2) (R – ветвь с R=0), между узлами (1) и (4):

 


Компонентное уравнение:

 (40)

Ветвь 2: Дано:

 

В этой ветви отсутствует источник ЭДС,  и источник тока . Имеется только сопротивление   включенное между узлами (1) и (2):

 



Компонентное уравнение этой ветви (таблица 1, пункт 1):

. (41)

Ветвь 3: Дано:

 .

В этой ветви источник тока отсутствует. В эту ветвь последовательно включены идеальный источник ЭДС  и сопротивление  между узлами (2) и (3) «в режиме генератора», следовательно:

 


Методы расчета электрических цепей в курсовой по электротехнике