Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Лабораторные работы по физике Исследование упругих и тепловых свойств воздуха. Изучение явления электропроводности Электромагнитные волны Интерференция Явление дифракции Ядерная модель атома Атомное ядро.

Лабораторные работы по физике

Лабораторная работа № 2-7

ОПРЕДЕЛЕНИЕ ПОКАЗАТЕЛЯ АДИАБАТЫ ВОЗДУХА МЕТОДОМ КЛЕМАНА - ДЕЗОРМА

Цель работы: ознакомление с методом измерения показателя адиабаты для воздуха при адиабатическом процессе расширения и последующем изохорическом нагревании.

Оборудование: установка, состоящая из стеклянного баллона с кранами, манометра и осушительного фильтра с порошком хлористого кальция, насоса и секундомера.

Введение

Адиабатическим называется такой процесс, который протекает без теплообмена с окружающей средой. Быстропротекающие процессы можно считать адиабатическими, если за время протекания процесса теплообменом рабочего объема с окружающей средой можно пренебречь.

Адиабатический процесс в газе описывается уравнением Пуассона

  

где P1,V1 – первоначальные давление и объем газа;

 P2,V2 – давление и объем газа после адиабатического процесса;

  – показатель адиабаты.

Адиабатический процесс на диаграмме P–V изображается кривой , называемой адиабатой. Показатель адиабаты равен отношению теплоемкости при постоянном давлении к теплоемкости при постоянном объеме

 

Теплоемкостью тела называется отношение элементарного количества тепла , полученного телом, к соответствующему приращению dT его температуры

 

Если масса тела равна единице массы, то теплоемкость называют удельной. Теплоемкость одного моля вещества называют молярной. Для газов теплоемкость (как удельная, так и молярная) при постоянном давлении больше теплоемкости при постоянном объеме CP > CV, так как при нагревании газа при постоянном давлении (изобарический процесс) подведенное к газу тепло идет на увеличение его внутренней энергии (а следовательно, и температуры) и на совершение газом работы расширения для поддержания постоянного давления. Например, если газ заключен в сосуд с подвижным поршнем, обеспечивающим постоянное давление, то, нагреваясь, он расширяется и поднимает поршень, совершая, таким образом, работу против внешних сил. При нагревании при постоянном объеме (изохорический процесс) все тепло, подведенное к газу, идет на увеличение только его внутренней энергии.

Описание установки

Экспериментальная установка изображена на рис. 1. В стеклянный тонкостенный сосуд А накачивается воздух до некоторого давления P1, превышающего атмосферное , где Р0 – атмосферное давление; h1, – избыток давления сверх атмосферного (измеряется водяным манометром М).

Когда воздух в баллоне примет температуру окружающего воздуха T1 , быстро (с) открывается клапан К и воздух выпускается наружу до тех пор, пока давление в баллоне не станет равным атмосферному (P2=P0).

Выход воздуха происходит быстро, и, пренебрегая в первом приближении передачей тепла через стенки баллона, процесс расширения воздуха в баллоне можно считать адиабатическим. При этом расширяющийся воздух совершает работу против внешних сил – внешнего атмосферного давления.

Следовательно, температура воздуха в баллоне понижена (до температуры T2).

После закрытия клапана К давление внутри сосуда начнет возрастать, так как охладившийся при расширении воздух снова нагревается, получая тепло из окружающей среды. Возрастание давления прекратится, когда температура воздуха сравняется с внешней температурой T1. Окончательное давление

,

где h2 – разность уровней манометра. Происходящие в сосуде процессы представлены на PVдиаграмме на рис. 2. Температура воздуха в состояниях 1 и 3 одинакова. Согласно закону Бойля – Мариотта

V1(P0 + h1) = V2(P0 + h2)

или

. (1)

В процессе 1-2 произошло адиабатическое расширение газа. Согласно уравнению Пуассона, получим

;

 . (2)

Из (1) и (2) следует

Логарифмирование дает

 

Так как давления P0; P0+h1 и P0+h2 незначительно отличаются друг от друга, то в первом приближении логарифмы величин можно заменить их величинами, т.е. искомое значение

. (3)

Для вычисления  по формуле (3) нужно измерить добавочные (относительно атмосферного) давления воздуха в баллоне в 1-м и 3-м состояниях.

Порядок выполнения работы

1. Перед началом работы убедиться в герметичности кранов и мест соединения трубок. Для этого накачайте в сосуд воздух и перекройте кран К. По манометру проследите за изменением давления h1 в сосуде с течением времени t и постройте график h1=f(t). Если установка достаточно герметична, то по истечении некоторого времени , необходимого для установления термодинамического равновесия, давление в баллоне перестанет снижаться. В противном случае необходимо найти и устранить течь. Из графика рис. 3 определите время установления термодинамического равновесия .

2. Накачайте воздух в сосуд. Выждав время , измерьте избыточное давление h1 воздуха в сосуде перед адиабатическим расширением. Затем на короткое время (только до момента выравнивания давлений) откройте кран К (см. рис. 1). Давление в сосуде и температура понизятся (давление до атмосферного, а температура станет ниже комнатной). Температура воздуха в сосуде сравняется с комнатной через время , после этого измерьте избыточное давление h2,. Измерения повторяют 5 – 10 раз.

Величину  подсчитать по формуле (3) для каждой пары значений h1 и h2. Результаты отдельных экспериментов будут заметно отличаться друг от друга. Разброс связан с временем открывания крана К: если кран закроем раньше, чем давление упадет до атмосферного, получим завышенные значения h2 и ; если кран закроем с опозданием, получим заниженные значения h2 и . Так как разброс отдельных результатов случаен, вероятным результатом измерения считаем среднее значение.

3. Результаты измерений h1 и h2 записать в таблицу. Подсчитать среднее значение . Оценить погрешность  двумя способами: как случайную и как погрешность косвенных измерений. Сравнить их. Окончательный результат представить в виде

.

Дополнительное задание

Исследовать влияние времени открывания крана К на получаемый результат. Определить оптимальное время открывания крана К и проанализировать полученные результаты.

Контрольные вопросы

1. Какой процесс называется адиабатическим, и при каких услови­ях он протекает?

2. Приведите уравнение Пуассона. Чему равен показатель адиабаты? Что такое теплоемкость?

3. Опишите процессы, протекающие в сосуде при измерениях величин h1 и h2?

4. Как повлияло бы на результат наличие в сосуде паров воды?

Список рекомендуемой литературы

1. Лабораторный практикум по физике / Под ред. А.С. Ахматова. – М.: Высш. шк., I960. – 360 с.

2. Савельев И.В. Курс общей физики: В 3 т. Т. 1. – М.: Наука, 1989. – 352 с.


Лабораторные работы по физике, лекции и конспекты