Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Лабораторные работы по физике Исследование упругих и тепловых свойств воздуха. Изучение явления электропроводности Электромагнитные волны Интерференция Явление дифракции Ядерная модель атома Атомное ядро.

Лабораторные работы по физике

КОЛЕБАНИЯ И ВОЛНЫ

В цикле лабораторных работ по данной тематике исследователь знакомится с характеристиками электрического и магнитного полей и методами исследования этих полей, учится собирать электрические цепи, приобретает навыки работы с электроизмерительными приборами. В работах используются основные законы электромагнетизма.

Порядок оформления отчета о выполнении лабораторной работы

в лаборатории электрических и магнитных измерений

Отчет должен содержать задание, спецификацию приборов, таблицу измерений, пример расчета. При обработке результатов делаются все необходимые расчеты искомой величины и погрешностей измерений в соответствии с заданием. Окончательный результат записывается с учетом погрешности. В конце отчета приводится краткое обсуждение полученного результата.

Спецификация приборов составляется, если в работе используются стрелочные приборы или имеются паспорта этих приборов, и записывается в виде табл. 1:

Таблица 1

п/п

Наименова-ние измери-тельного прибора

Завод-ской номер

Система прибора

Пределы измере-ний

Цена деления

Класс точности прибора

Абсо-лютная погреш-ность

Сведения о свойствах стрелочного прибора содержатся на его панели.

Наименование прибора написано либо словом, либо символом, например V – вольтметр, мA – миллиамперметр.

Система прибора задается значком (табл. 2):

 Таблица 2

Система

Знак

Магнитоэлектрическая

Электромагнитная

Электродинамическая

Электродинамическая с магнитным экраном

Индукционная

Электростатическая

Пределы измерений задаются на панели прибора:

а) если несколько клемм подключения прибора – то цифрой, обозначенной рядом с клеммой;

б) если две клеммы подключения и переключатель пределов – то цифрой, обозначенной на переключателе.

Цена деления определяется отношением предела измерения к числу делений шкалы.

Класс точности обозначен на панели прибора в виде цифры, которая может иметь следующие значения: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.

Абсолютная погрешность вычисляется по формуле , где k – класс точности, An – номинальное значение измеряемой величины (предел измерений).

Лабораторная работа № 3-1

ИЗУЧЕНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Цель работы: ознакомиться с методом моделирования электрического поля, построить эквипотенциальные поверхности (линии) электро­статического поля, силовые линии поля.

Оборудование: ванна, заполненная малопроводящей жидкостью; набор электродов; нуль-индикатор, в качестве которого может использоваться головной телефон, осциллограф или вольтметр для измерения в цепи переменного тока; источник переменного тока малого напряжения, в качестве которого можно использовать звуковой генератор.

Введение

Электрическим полем называется особая форма материи в пространстве около электрических зарядов, в котором действуют электрические силы. Если заряды неподвижны и неизменны, их поле называется электростатическим. Электростатическое поле в каждой его точке характеризуется вектором напряженности электрического поля  (силовая характеристика); потенциалом этой точки  (энергетическая характеристика поля в данной точке).

Напряженность поля, силовые линии. Напряженность электрического поля   – векторная характеристика электрического поля, численно равна силе, действующей в данной точке поля на единичный положительный электрический заряд; вектор напряженности по направлению совпадает с направлением этой силы:

 . (1)

Если электрическое поле вызвано одним точечным зарядом q, то величина напряженности поля определяется как .

Для графического изображения поля проводят линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности поля. Такие линии называются силовыми линиями поля.

Потенциал, эквипотенциальные линии. Потенциал данной точки электростатического поля определяется как физическая величина, численно равная работе, совершаемой электрическими силами при перемещении единичного положительного заряда из данной точки поля в бесконечность, или как физическая величина, численно равная потенциальной энергии единичного положительного заряда, помещенного в эту точку.

.

Работа сил потенциального поля по замкнутому контуру равна нулю. Потенциал поля точечного заряда определяется как .

Эквипотенциальная поверхность – геометрическое место точек, потенциалы которых равны (в случае двух измерений говорят об эквипотенциальной линии). Согласно формуле для потенциала электростатического поля точечного заряда эквипотенциальные поверхности являются сферическими. Силовые линии и эквипотенциальные линии взаимно ортогональны (т.е. касательные, проведенные в точках их пересечения, взаимно перпендикулярны). На рис. 1 сплошными линиями изображены эквипотенциальные, а пунктирными – силовые линии электрического поля двух одноименных точечных зарядов.

Значение модуля вектора напряженности можно определить, измеряя разность потенциалов в двух близко расположенных точках, лежащих на силовой линии, построенной по координатной сетке.

Известно, что 

 или . (2)

где

 (3)

градиент потенциала j – вектор, указывающий направление быстрейшего увеличения величины j.

 Метод моделирования электростатического поля. Для экспериментального изучения электростатического поля используется полная аналогия, существующая между распределением потенциала в электростатическом поле и в проводящей среде, по которой течет стационарный (постоянный во времени) электрический ток. Такая среда условно обозначается "поле тока".

Аналогия дает возможность заменять изучение электростатического поля между заряженными телами излучением поля стационарного тока между электродами при условии, что их потенциалы поддерживают постоянными и проводящая среда имеет значительно большее удельное сопротивление, чем материал электродов. Такой метод называется моделированием электростатического поля.

Для изучения поля в проводящую среду вводятся два подвижных зонда и два неподвижных электрода; каждый зонд принимает потенциал той точки, в которую он введен.

Отсутствие разности потенциалов между зондами свидетельствует о том, что они находятся на одной эквипотенциальной поверхности. Координаты точек с одинаковыми потенциалами регистрируются в процессе исследования электрического поля; по ним строятся эквипотенциальные линии и силовые линии.

Электролитическая ванна

Электрическое поле моделируется при помощи электролитической ванны. Электролитическая ванна представляет собой сосуд (желательно с плоским дном), в котором находится слабопроводящая среда. В качестве проводящей среды пользуются сильно разбавленным электролитом, который наливается в сосуд тонким слоем. На дно сосуда нанесена координатная сетка; в сосуд помещаются электроды, которые представляют исследуемую систему заряженных тел. Чтобы поддерживать потенциалы электродов постоянными, они присоединяются к источнику питания. Необходимо использовать источник переменного тока, поскольку на постоянном токе у поверхности электродов образуется двойной электрический слой, который не позволяет осуществить физическое моделирование.

Следует строго соблюдать горизонтальное положение ванны, чтобы слой электролита имел повсюду одинаковую толщину. Для предотвращения нагрева электролита рекомендуется работать с малой плотностью тока, поэтому электроды присоединяются к источнику небольшого напряжения (~10В).

На рис. 2 изображена схема установки, где: 1 – электролитическая ванна, 2 – электроды, 3 – зонды, 4 – индикатор, 5 – источник тока.

Чтобы предотвратить искажения поля, сопротивление индикатора должно быть значительно больше сопротивления участка среды между зондами, поэтому удобно в качестве индикатора использовать электронный осциллограф. В качестве зондов используются металлические тела малого размера.

Порядок выполнения работы

Расположить электроды в электролитической ванне по рекомендации преподавателя (рис. 3). Записать их координаты. Подключить электроды к источнику переменного тока.

Соединительными проводами подключить зонды к нуль-индикатору (осциллографу или вольтметру).

Зафиксировать один из зондов (неподвижный) в произвольной точке ванны, записать координаты этой точки. Перемещая второй зонд (подвижный), определить положение другой точки, для которой сигнал на индикаторе становится равным нулю. В этом случае зонды находятся в точках поля с одинаковым значением потенциала. При использовании осциллографа в качестве индикатора сигнал должен быть минимальным по амплитуде. Записать координаты найденной точки.

Рис. 3

Не меняя положение неподвижного зонда и используя методику п. 3, определить координаты еще 7-10 точек поля.

Результаты этой серии исследований занести в таблицу:

Координаты зонда

X, мм

Y, мм

Неподвижного

Подвижного

 

Провести другую серию экспериментов. Для этого зафиксировать неподвижный зонд в иной точке ванны и вновь проделать измерения по методике, изложенной выше. Результаты занести в таблицу.

Опыты проделать для 5 – 7 серий.

 Построить графики. Для этого на листе миллиметровой бумаги в выбранном масштабе указать конфигурацию электродов и обозначить точки равного потенциала из одной серии экспериментов. Изобразить эквипотенциальную линию, соединяя точки равного потенциала плавной линией. Изобразить эквипотенциальные линии для каждой серии экспериментов.

 Результаты построений использовать для изображения на графике нескольких силовых линий (5 – 7 линий).

Правила работы с генератором звуковых частот

Установить ручку регулятора выхода в среднее положение (ручку вращать без приложения усилий).

При помощи ручек "множитель" и "частота" установить частоту колебаний в интервале 1000 – 1400 Гц.

Включить генератор.

4. Переключатели "ослабление" или "аттенюатор" поставить в положение, при котором уровень выходного сигнала соответствует нормальной работе нуль-индикатора.

Контрольные вопросы

 Дайте определение напряженности и потенциала электростатического поля.

 Запишите формулы напряженности и потенциала поля точечного заряда.

 Чему равна потенциальная энергия положительного единичного заряда в поле, создаваемом точечным зарядом?

 Покажите, что силовые линии напряженности электростатического поля ортогональны эквипотенциальным поверхностям.

 Как математически связаны потенциал и напряженность поля?

 Какое поле называется потенциальным?

 Какие поверхности (линии) называются эквипотенциальными?

Список рекомендуемой литературы

Савельев И.В. Курс общей физики: В 3 т. Т. 2. – М.: Наука, 1982. – 496 с.

Физический практикум. Электричество и оптика / Под ред. В.И. Ивероновой. – М.: Наука, 1968. Задача 65.

Яворский Б.М. Курс физики: В 3 т. Т. 2. – М.:Наука, 1966. §21, 22, 23.


Лабораторные работы по физике, лекции и конспекты