Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Лабораторные работы по физике Исследование упругих и тепловых свойств воздуха. Изучение явления электропроводности Электромагнитные волны Интерференция Явление дифракции Ядерная модель атома Атомное ядро.

Лабораторные работы по физике

МЕХАНИКА

В лаборатории механики учащиеся применяют разнообразные измерительные инструменты в сочетании с действием автоматизированных установок. Лабораторные работы по механике направлены на освоение студентами методов статистической обработки данных физического эксперимента, методов исследования основных закономерностей поступательного и вращательного движения тел. Также изучаются свойства ряда важнейших механических величин.

Лабораторная работа № 1-1

Исследование распределения результатов физических измерений

 

Цель работы: определение параметров распределения результатов измерений и получение приближенного вида функции распределения.

Оборудование: микрометр, штангенциркуль, набор цилиндров.

Введение

Набор цилиндров (100 … 200 шт.), используемый в данной лабораторной работе – это совокупность одинаковых объектов, изготовленных в одинаковых условиях. Поэтому при измерении высоты (или диаметра) цилиндров, казалось бы, должна получаться одна и та же физическая величина. Однако в силу влияния большого количества причин, действующих случайно, совокупность высот цилиндров представляет собой набор случайных величин, моделирующих разброс результатов отдельных измерений в физическом эксперименте.

Это распределение характеризуется параметрами:

1) среднее арифметическое значение высоты ;

2) дисперсия ;

3) среднеквадратичная погрешность  (где n – число измерений).

Если бы число измерений было бесконечно большим, то <h> совпадало бы с истинным значением высоты цилиндра, а DSn c s. График распределения отдельных значений hi относительно <h> имел бы вид, подобный рис. 1. на с. 8. Число измерений ограничено, но и в этом случае удается получить приближенный вид функции распределения результатов измерений, построив гистограмму (столбчатую диаграмму).

Для построения гистограммы необходимо отрезок hmax – hmin (где hmax – максимальное из измеренных значений высот цилиндра, hmin – минимальное из измеренных значений высот цилиндра) разбить на N равных интервалов величины Dh, подсчитать число “попаданий” ni значений высот цилиндров в каждый интервал и относительную частоту попаданий в каждый интервал fi = ni / n.

Если значение высоты цилиндра попадает на границу интервалов, то этот цилиндр учитывается в правом интервале. Для количественного сравнения кривой Гаусса с гистограммой в последней по оси ординат необходимо отложить величину оценки плотности вероятности каждого интервала . Проделанные разбиения и расчеты в табличной форме имеют вид:

Число

интервалов

Интервал

ni

ni/(n·Δh)

1

hmin ¸ h1

n1

f1

f1/Δh

2

h1 ¸ h2

n2

f2

f2/Δh

.

………….

hN-1 ¸ hmax

nN

fN

fN/Δh

По значениям, представленным в таблице, строится гистограмма (см. рисунок). Как видно из рисунка, гистограмма – это совокупность прямоугольников, у которых одна сторона у всех равна ширине интервала Δh, а вторая – частоте попадания значений высот цилиндров в соответствующий интервал.

Порядок выполнения работы

Измерить высоты 100 … 200 цилиндров и результаты внести в отчет.

Определить по полученным значениям высот цилиндров: максимальное из измеренных значений высот цилиндров, минимальное из измеренных значений высот цилиндров, среднее значение высоты цилиндров, дисперсию распределения, среднеквадратичную погрешность распределения.

Разбить отрезок hmax – hmin на 6 ¸ 8 интервалов. Определить число попаданий и относительную частоту попаданий для каждого интервала. Полученные значения представить в табличной форме подобно таблице выше.

Построить гистограмму для распределения относительной частоты попаданий fi на миллиметровой бумаге.

Построить гистограмму оценки плотности вероятности ni/(n·Δh). Изобразить пунктиром там же Гауссову кривую по рассчитанным в п.2 значениям <h> и s2, воспользовавшись формулой .

Сравнить Гауссову кривую с гистограммой оценки плотности вероятности и проанализировать полученные результаты.

Контрольные вопросы

1. Как построить гистограмму?

2. Чем определяется число интервалов, на которое разбивается отрезок hmax – hmin при построении гистограммы?

3. Как в эксперименте добиться того, чтобы гистограмма точнее отображала функцию распределения результатов эксперимента.

4. Укажите способ определения дисперсии по известному виду кривой функции распределения.

Список рекомендуемой литературы

1. Смирнов Н.В., Дунин-Барковский И.В. Курс теории вероятностей и математической статистики. – М.: Наука, 1965. – 511 с.

2. Савельев И.В. Курс общей физики: В 3 т. Т. 1. – М.: Наука, 1989. – 352 с.

3. Физический практикум. Механика и молекулярная физика / Под ред. В.И. Ивероновой. – М.: Наука, 1967. – 352 с.

 4. Методические указания к лабораторным работам по физике с обработкой результатов экспериментов на персональном компьютере/ Сост. О.Я. Бутковский, В.Н. Кунин; Под ред. В.С. Плешивцева. Владим. гос. ун-т. – Владимир, 1999. – 44 c.


Лабораторные работы по физике, лекции и конспекты