Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Лабораторные работы по физике Исследование упругих и тепловых свойств воздуха. Изучение явления электропроводности Электромагнитные волны Интерференция Явление дифракции Ядерная модель атома Атомное ядро.

Физика, лекции и конспекты

Дифракция Фраунгофера от щели. Дифракционная решетка. Голография.

Дифракция Фраунгофера от щели.

 Соответствующий расчет и здесь будет проведен с помощью принципа Гюйгенса—Френеля.

Пусть на бесконечно длинную щель ширины b (длина щели много больше ее ширины) падает нормально плоская волна. Расположим за щелью собирающую линзу, а в ее фокальной плоскости экран (рис.3.9.1). Когда фронт волны совместится с плоскостью щели, мы можем полагать, что в щели находятся вторичные источники. Лучи от этих источников, падающие на линзу параллельным пучком, она соберет в одной точке на экране. Таким образом, в каждой точке экрана картину создают лучи, идущие от вторичных источников параллельным пучком. Поэтому эту картину  Рис.3.9.1.

 называют иногда дифракцией в параллельных лучах. (Такую же

картину мы получили бы, если бы экран располагался бесконечно далеко от щели).

Разобьем мысленно открытую часть волновой поверхности на очень узкие одинаковые по ширине зоны-полоски, параллельные прямолинейным краям щели. Суммирование вторичных волн проведем с помощью векторной диаграммы (рис.3.9.2).Колебания, приходящие в точку P от каждой такой зоны-полоски имеют одинаковую амплитуду dA. При Рис.3.9.2.

 этом разность фаз между колебаниями,

 приходящими в точку P от соседних зон-полосок,

 будет одинакова (проходя через линзу, лучи не приобретают дополнительной  разности фаз).Отсюда следует, что при графическом изображении мы получим цепочку векторов dA, одинаковых по модулю и повернутых относительно друг друга на один и тот же угол (рис.3.9.2а). Результирующая амплитуда изобразится вектором A — хордой дуги окружности с центром в точке C.

Заметим, что для точки P0 эта цепочка образует прямую, что соответствует максимуму интенсивности.

Если разность хода крайних лучей (рис.3.9.1) составляет D = l, то их разность фаз d = 2π, цепочка оказывается замкнутой и амплитуда результирующего колебания обращается в нуль (рис.3.9.2б). Это первый минимум дифракционной картины, представляющей собой симметричную относительно середины систему чередующихся светлых и темных полос, параллельных щели.

Результирующая амплитуда обращается в нуль и тогда, когда разность фаз от крайних элементов щели равна 2πm, где m = 1, 2,... Цепочка при этом замыкается после m оборотов, практически не меняя своей длины A0, поскольку угол дифракции обычно достаточно мал.

Разность фаз d связана с разностью хода D соотношением 

где l — длина волны света.

Так как для крайних лучей D = bsin (рис.3.9.1) и в минимуме d = 2πm, то из этих трех равенств следует условие для минимумов:

 m = 1, 2, … (3.9.1)

Заметим, что m ¹ 0, поскольку при m = 0 образуется максимум (цепочка векторов становится прямой).

Из этой формулы видно, что уменьшение ширины b щели приводит к расширению дифракционной картины.

Количество минимумов интенсивности определяется отношением ширины щели к длине волны. Из (3.9.1) следует ± m/b. Модуль  не может превысить единицу. Поэтому наибольший порядок минимума

m ≤ b/ (3.9.2)

Таким образом, при ширине щели, меньшей длины волны, минимумы вообще не возникают. В этом случае интенсивность света монотонно убывает от середины картины к ее краям.

С другой стороны, если щель очень широкая, как видно из (3.9.1), минимумы  будут располагаться очень близко друг от друга, так что максимумы, располагающиеся между ними, сольются и мы получим геометрическое изображение щели (дифракция не наблюдается). Поэтому в приведенном примере мы наблюдаем дифракционную картину лишь вдоль одной координаты в направлении ширины щели

График зависимости I от sin показан на рис.3.9.3. Расчеты показывают, что интенсивность второго максимума составляет около 4% от интенсивности центрального, поэтому можно считать, что практически весь световой поток, проходящий через щель, сосредоточен в первом (центральном) максимуме, угловая полуширина которого равна l/b.

Отметим еще раз, что в середине симметричной Рис.3.9.3.

дифракционной картины, состоящей из чередующихся

светлых и темных полос, при дифракции Фраунгофера всегда образуется максимум освещенности (в отличие от френелевой дифракции, где центральная полоса может быть как светлой, так и темной).

Если плоская световая волна падает на щель наклонно под углом   к нормали, то разность хода между колебаниями, распространяющимися от краев щели под углом  к нормали, будет равна . Это при условии, что оба угла  и отсчитываются от нормали в одну сторону — по или против часовой стрелки.

Условие дифракционных минимумов в данном случае принимает вид

 (3.9.3)

Центральный максимум (m = 0) будет расположен под углом , т. е. в направлении падающей волны, и дифракционная картина будет несимметрична относительно центральной светлой полосы.

Дифракционная решетка

Дифракционная решетка представляет собой стеклянную или металлическую пластинку, на которой нанесено очень много (иногда до сотен тысяч) прямых равноотстоящих штрихов одинаковой конфигурации. Таким образом образуется совокупность прозрачных и непрозрачных участков.

Рассмотрим простейшую идеализированную решетку, состоящую из одинаковых равноотстоящих щелей в непрозрачном экране. Пусть ширина каждой щели равна b, а непрозрачного участка а, период решетки — d=b+a. В решетке реализуется многолучевая интерференция когерентных дифрагированных пучков света, исходящих из каждой щели решетки при ее освещении.

Дифракционную (точнее дифракционно-интерференционную) картину наблюдают по методу Фраунгофера, т.е. в параллельных лучах, а практически Рис.3.9.4.

 — в фокальной плоскости объектива (рис.3.9.4a).

Пусть плоская монохроматическая световая волна падает на решетку нормально. Каждая из щелей в отдельности давала бы в фокальной плоскости объектива дифракционную картину, показанную на рис.3.9.3. И такие картины от всех щелей в отсутствие когерентности точно накладывались бы друг на друга, независимо от их положения. Интенсивности при этом складывались бы, и мы получили бы при наличии N щелей дифракционную картину как от одной щели, но усиленную в N раз.

При освещении же решетки когерентным светом, световые волны от всех щелей интерферируют друг с другом, и дифракционная картина резко меняется. Мы будем наблюдать систему достаточно узких максимумов.

Главные максимумы. В середину дифракционно-интерференционной картины когерентные колебания от всех щелей приходят в фазе. Это значит, что если амплитуда от одной щели равна A1, а число щелей в решетке N, то результирующая амплитуда A и соответствующая ей интенсивность I будут определяться формулами

Такой же результат получается и при углах дифракции , для которых оптическая разность хода D колебаний от соседних щелей (рис.3.9.4б) равна целому числу длин волн:

 m = 1, 2, … (3.9.4)

где знаки «±» следуют из симметрии дифракционной картины относительно нормали к решетке ( = 0): при знаке плюс угол > 0, а при знаке минус - угол < 0.

В направлениях , определяемых этим уравнением, возникают максимумы, интенсивность которых в N2 раз превосходят интенсивность от каждой щели в том же направлении. Их называют главными максимумами m-го порядка, а уравнение (3.9.4) — условием главных максимумов. Именно главные максимумы и представляют особый практический интерес. Как мы увидим далее, они получаются тем более узкими и резкими, чем большее число N штрихов содержит решетка.

Интерференционные минимумы. Для выяснения дальнейших деталей фраунгоферовой дифракционной картины воспользуемся векторной диаграммой, которая позволит легко найти и результирующую амплитуду A колебаний, приходящих в произвольную точку P фокальной плоскости объектива (рис.3.9.5).

Векторная диаграмма в нашем случае пред- 

ставляет собой цепочку векторов-амплитуд Рис.3.9.5.

 когерентных колебаний, приходящих в точку P

от каждой из N щелей: A1, A2,..., AN (рис.3.9.5a). По модулю эти векторы одинаковы, и каждый следующий отстает от предыдущего (или опережает, это не существенно) по фазе на один и тот же угол g. Этот угол связан с оптической разностью хода D соответствующих лучей от соседних щелей при нормальном падении света на решетку соотношением:

 (3.9.5)

где d — период решетки.

Теперь проследим, как будет вести себя эта цепочка векторов (а значит и ее замыкающая A) при удалении точки P от фокуса F, т. е. с ростом угла дифракции .

Ясно, что при этом будет увеличиваться разность фаз g между колебаниями от соседних щелей, и цепочка векторов будет постепенно закручиваться. Первый раз она замкнется и вектор A обратится в нуль, когда угол Ng станет равным 2π — это непосредственно видно из рис.3.9.5б.

При дальнейшем росте угла , а значит, разности фаз g и Ng, цепочка будет периодически то распрямляться (главные максимумы, А = макс), то замыкаться (интерференционные минимумы, А = 0). Последнее будет происходить при значениях угла Ng кратных 2π:

 (3.9.6)

где m’ принимает целочисленные значения, кроме 0, N, 2N, ... , при которых цепочка распрямляется, и мы получаем главные максимумы.

Подставив в (3.9.6) значение g из формулы (3.9.5), получим:

 (3.9.7)

Это выражение представляет собой условие для интерференционных минимумов (при целочисленных значениях m’, кроме 0, N, 2N, ...). Оно же содержит и условие (3.9.4) для главных максимумов (при m’ = 0, N, 2N, ...). Между двумя соседними главными максимумами расположены N – 1 интерференционных минимумов. А между последними, в свою очередь, — добавочные максимумы, интенсивность которых при достаточно большом числе N штрихов решетки пренебрежимо мала (она составляет не более 5% от интенсивности главных максимумов).

В отличие от условия (3.9.4), которое дает только положения главных максимумов, соотношение (3.9.7) позволяет определить и их угловую ширину. В самом деле, при переходе от главного максимума к соседнему минимуму (рис.3.9.6) m’ меняется на единицу, например от N до N + 1. Тогда при достаточно большом N угловую полуширину  главного максимума 1-го порядка Рис.3.9.6. 

можно найти, взяв дифференциал уравнения (3.9.7)

с учетом того, что m’ при этом меняется на единицу (dm’ = 1). Тогда , откуда

 (3.9.8)

Обращает на себя внимание тот факт, что  зависит не от d и N в отдельности, а от их произведения, которое есть не что иное, как ширина решетки h = Nd. С ростом угла дифракции  ширина главных максимумов увеличивается. Главные максимумы будут тем уже, чем больше ширина решетки h и меньше угол дифракции .

Теперь выясним, что означает утверждение, например, «угловая ширина главного максимума  мала». По сравнению с чем? Ответ достаточно очевидный: величину  надо сравнивать с угловой шиной Dd между соседними главными максимумами. Если  « Dd, мы говорим, что главные максимумы узкие (резкие). Оценим отношение этих двух величин. Значение   соответствует изменению m’ в (3.9.7) на единицу, но таких значений m’ между двумя соседними главными максимумами оказывается N. Считая, что на каждый интервал dm’ = 1 приходится одно и то же значение  (для оценки), приходим к выводу, что  в N раз меньше, чем Dd. Итак, резкость главных максимумов пропорциональна числу штрихов решетки (более точный расчет приводит к тому же результату).

Таким образом, с помощью условий (3.9.4) и (3.9.7) мы можем установить не только положения главных максимумов, но и их угловую ширину (резкость). Остается решить вопрос об их интенсивности. Рассмотрим его сначала качественно.

Прослеживая поведение векторной диаграммы по мере увеличения угла дифракции , мы оставили без внимания тот факт, что при этом каждый вектор цепочки по модулю будет уменьшаться, ибо он определяется дифракцией от каждой щели. Результирующий вектор при закручивании цепочки будет сначала уменьшаться и в дальнейшем вести себя аналогично тому, как показано на рис3.9.3 зависимости I от sin.

Следовательно, кроме интерференционных минимумов, необходимо иметь в виду и дифракционные минимумы, определяемые условием (3.9.1), т. е.

где b — ширина каждой щели.

При этом условии все векторы цепочки обращаются в нуль, значит и результирующая интенсивность в этих направлениях всегда должна быть равна нулю. Даже в том случае, если этому направлению соответствует главный максимум m-го порядка.

Интенсивность главных максимумов. Распределение интенсивности в дифракционно-интерференционной картине проще всего получить с помощью векторных диаграмм (рис.3.9.5 и 3.9.2). В итоге получим следующее выражение:

 (3.9.9)

где, напомним,

 

Полученный результат (3.9.9) графически представлен на рис.3.9.7 как зависимость интенсивности дифракционной картины от синуса угла дифракции . Как видим, интерференция многих пучков привела Рис.3.9.7.

 к резкому перераспределению интенсивности света, обусловленному дифракцией от каждой щели.

 Первая дробь в выражении (3.9.9) представляет собой плавную функцию от sin (она показана пунктиром на рисунке и отражает дифракционное распределение интенсивности от каждой щели). Эта плавная функция модулирует многолучевую интерференционную картину от N щелей, которую описывает вторая дробь в формуле (3.9.9).

Практически наиболее важными являются главные максимумы, попадающие в центральный дифракционный максимум от каждой щели — они являются наиболее интенсивными.

Дифракционная решетка как спектральный прибор.

Дифракционная решетка является важнейшим спектральным прибором, предназначенным для разложения света в спектр и измерения длин волн. Из формулы (3.9.4), определяющей направления на главные фраунгоферовы максимумы, видно, что эти направления  зависят от длины световой волны l (за исключением максимума нулевого порядка, m = 0). Поэтому решетка в каждом порядке m ¹ 0 разложит падающий на нее свет в спектр различных порядков. Причем наибольшее отклонение в каждом порядке испытывает красная часть спектра (более длинноволновая).

Основными характеристиками любого спектрального прибора являются угловая дисперсия, разрешающая способность и область дисперсии.

1. Угловая дисперсия D характеризует степень пространственного (углового) разделения волн с различными длинами l. По определению,

 (3.9.10)

где  - разность длин волн, дающих максимум данного порядка,  - разность углов под которыми эти максимумы наблюдаются.

Дифференцируя формулу (3.9.4) при данном m находим для решетки , откуда

  (3.9.11)

Видно, что для заданного порядка m спектра угловая дисперсия тем больше, чем меньше период d решетки. Кроме того,  растет с увеличением угла дифракции .

2. Разрешающая способность R. По определению,

 (3.9.12)

где  — наименьшая разность длин волн спектральных линий, при которой эти линии воспринимаются еще раздельно, т. е. разрешаются. Величина R не может быть по ряду причин определена точно, а лишь ориентировочно (условно). Такой условный критерий был предложен Рэлеем.

Согласно критерию Рэлея, спектральные линии с разными длинами волн, но одинаковой интенсивности, Рис.3.9.8.

считаются разрешенными, если главный максимум одной спектральной линии совпадает с первым минимумом другой (рис.3.9.8). В этом случае между двумя максимумами возникает провал, составляющий около 20% от интенсивности в максимумах, и линии еще воспринимаются раздельно.

 Итак, согласно критерию Рэлея и формуле (3.9.9), необходимо, чтобы максимум m-го порядка (m’ = mN) линии с длиной волны l + dl (рис.3.9.8) совпадал по направлению с первым минимумом линии l (m’ = mN + 1), т. е.

Отсюда следует, что

 (3.9.13)

Это и есть искомая формула для разрешающей способности дифракционной решетки. Данная формула дает верхний предел разрешающей способности. Она справедлива при выполнении следующих условий:

1. Интенсивность обоих максимумов должна быть одинаковой.

2. Расширение линий должно быть обусловлено только дифракцией.

3. Необходимо, чтобы падающий на решетку свет имел ширину когерентности, превышающую размер решетки. Только в этом случае все N штрихов решетки будут “работать” согласованно (когерентно), и мы достигнем желаемого результата.

Для повышения разрешающей способности спектральных приборов можно, как показывает формула (3.9.13), либо увеличивать число N когерентных пучков, либо повышать порядок интерференции m. Первое используется в дифракционных решетках (число N доходит до 200 000), второе — в интерференционных спектральных приборах (например, в интерферометре Фабри—Перо число N интерферирующих волн невелико, порядка нескольких десятков, а порядки интерференции m ~ 106 и более).

3. Область дисперсии Dl — это ширина спектрального интервала, при которой еще нет перекрытия спектров соседних порядков. Если спектры соседних порядков перекрываются, то спектральный аппарат становится непригодным для исследования соответствующего участка спектра.

Длинноволновый конец спектра m-го порядка совпадает с коротковолновым концом спектра (m + 1)-го порядка, если m(l + Dl) = (m + 1) l, откуда следует, что область дисперсии

 (3.9.14)

Значит, область дисперсии Dl обратно пропорциональна порядку спектра т. При работе со спектрами низких порядков (обычно второго или третьего) дифракционная решетка пригодна для исследования излучения, занимающего достаточно широкий спектральный интервал.

 

Дифракция на двумерных и трехмерных решетках.

Двумерной решеткой называется структура, свойства которой периодически меняются в двух направлениях. Примером могут служить две скрещенные одномерные решетки, т.е. наложенные одна на другую под некоторым углом. Дифракционная картина от такой структуры может быть получена путем наложения дифракционных картин от соответствующих одномерных решеток.

Трехмерные, пространственные решетки обладают периодичностью в трех различных направлениях. Они играют важную роль в физике рентгеновских лучей. Дифракцию рентгеновских лучей на оптических дифракционных решетках получить нельзя, так как длина волны рентгеновского излучения имеет порядок 0,1нм, т.е. значительно меньше ширины щели оптической решетки. Дифракцию рентгеновских лучей можно наблюдать, если использовать кристаллическую структуру, как естественную периодическую пространственную решетку. В этом случае картина получается весьма сложной. Однако, ее можно использовать как для изучения спектрального состава излучения (если известны параметры кристалла), так и для определения характеристик кристалла (если известна длина волны излучения.

Голография.

Голография (от греческого холос – полный, графо – пишу) – способ получения объемных изображений предметов на фотопластинке при помощи когерентного излучения.

При освещении предмета от него распространяется рассеянная волна. Эта волна несет полную информацию о форме и других свойствах предмета. Попадая в глаз или объектив фотоаппарата, она образует на сетчатке или фотопластинке изображение. По степени почернения фотопластинки можно судить об амплитуде рассеянной волны. Таким образом, пластинка в этом случае сохраняет информацию только об амплитуде волны. Мы получаем плоское изображение. Для восстановления волнового поля в полном объеме (объемного изображения) этой информации недостаточно. Нужна еще информация о фазе, которую пластинка не содержит.

В 1947году английский физик и инженер Д.Габор показал, что необходимую информацию о фазе можно получить и записать на той же фотопластинке, если осветить ее вторым пучком от того же когерентного источника и заставить его интерферировать с пучком, рассеянным предметом.

Голограмма фиксирует не само изображение предмета, а структуру отраженной от него световой волны (амплитуду и фазу). Для получения голограммы необходимо, чтобы на фотопластинку одновременно попали два когерентных световых пучка: предметный, отраженный от снимаемого объекта, и опорный – приходящий непосредственно от источника. Свет обоих пучков интерферирует, создавая на пластинке чередование темных и светлых интерференционных полос. Рис.3.9.9.

Принципиальная схема устройства для записи голограммы приведена на рис.3.9.9. В этой схеме луч лазера делится специальным устройством на два. После этого лучи с помощью линз расширяются и с помощью зеркал направляются на объект и фотопластинку. Свет обоих пучков интерферирует, создавая на пластинке чередование темных и светлых полос. На экспонированной таким образом и проявленной пластинке отсутствует какое-либо изображение. Однако его в зашифрованном виде содержит система интерференционных полос. Если голограмму просветить, как диапозитив, лазерным светом той же частоты, что была использована при записи, возникнет «восстановленная голограмма» - объемное изображение предмета, словно висящее в пространстве. Меняя точку наблюдения, можно заглянуть за предметы на первом плане и увидеть детали, ранее скрытые от взгляда. Свет, проходя сквозь систему полос голограммы, дифрагирует и воспроизводит волновой фронт, исходивший от снятого предмета. Аналогичным образом лазерный луч, пропущенный через маленькое  отверстие, дает на фотопластинке, поставленной за отверстием систему колец (дифракция Френеля). А световой пучок, проходящий сквозь такую пластинку, сойдется в точку. Таким образом, система колец, полученная при дифракции Френеля представляет собой простейшую голограмму – голограмму точки.


Лабораторные работы по физике, лекции и конспекты