Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Лабораторные работы по физике Исследование упругих и тепловых свойств воздуха. Изучение явления электропроводности Электромагнитные волны Интерференция Явление дифракции Ядерная модель атома Атомное ядро.

Лабораторные работы по физике

Лабораторная работа № 1 – 9

ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА МЕТАЛЛОВ

МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ

Цель работы: изучение деформации сдвига металлов.

Оборудование: крутильный маятник, электронная установка, миллиметровая линейка, технические весы, микрометр, электрический секундомер.

Введение

Деформация – это изменение формы и размеров тела под действием внешних сил. Если после прекращения действия внешних сил тело полностью восстанавливает свою первоначальную форму, то такие деформации называются абсолютно упругими. Различают два вида деформаций. Деформация растяжения (сжатия) и деформация сдвига. При деформации сдвига все плоские слои твердого тела, параллельные некоторой плоскости, смещаются параллельно друг другу, не искривляясь и не изменяясь в размерах.

Возникающие в твердом теле при деформации упругие силы подчиняются закону Гука, который в относительной форме для деформации сдвига можно сформулировать следующим образом: относительная деформация сдвига прямо пропорциональна приложенному касательному напряжению. Для небольших деформаций, которые можно считать абсолютно упругими, величина относительной деформации равна Dl / L (рис. 1). Тогда закон Гука для деформации сдвига имеет вид

Δl/L = Y = Pr / G, (1)

где Pr – приложенное касательное напряжение; G – модуль сдвига.

Поскольку деформация при кручении есть деформация сдвига, то, изучая крутильные колебания, можно определить основную характеристику упругих свойств при сдвиге – модуль сдвига.

Описание установки

Крутильный маятник, с помощью которого изучаются крутильные колебания, состоит из твердого тела, подвешенного на вертикальной тонкой нити или стержне (рис. 2). При отклонении стержня из положения равновесия в нем будут возникать упругие силы деформации сдвига, направленные к положению равновесия. Если записать основной закон динамики вращательного движения для такой системы с учетом того, что угловое ускорение равно d2Y/dt2, то уравнение движения будет аналогично уравнению свободных незатухающих колебаний

 (2)

где , ;

Y – момент инерции тела, ;

T0 – период собственных колебаний;

L – длина стержня;

d – диаметр проволоки.

Таким образом, измерив период колебаний и определив момент инерции тела, можно найти модуль сдвига.

Если определение периода не составляет труда, то измерение момента инерции затруднительно, поскольку практически невозможно учесть все детали установки при вычислении момента инерции.

Эту трудность можно обойти, если учесть следующее: а) момент инерции – величина аддитивная, т.е. момент инерции всей установки равен сумме моментов инерций всех ее частей; б) теорема Штейнера связывает моменты инерции тела относительно параллельных осей. Исходя из этого момент инерции всего тела можно представить как сумму

, (3)

где Y0 – момент инерции какой-то эталонной части твердого тела;

Ỹ – момент инерции всего остального.

Тогда, определяя периоды колебаний для двух различных эталонных тел или для двух положений эталонного тела относительно оси вращения, можно, вычитая, исключить Ỹ.

В данной работе реализуются два способа определения модуля сдвига.

В первом способе используется « механическая » установка, в ней маятник представляет собой подвешенный на тонкой металлической проволоке диаметром  d стержень, вдоль которого перемещаются два калиброванных груза массой m (рис. 3). Тогда, измеряя периоды колебаний для двух различных положений груза l1 и l2 , находят разность моментов инерции для этих двух положений, получим выражение модуля в сдвиге в виде:

. (4)

Второй способ реализован с помощью электронной установки FРМ-05, которая представляет собой рамку для крепления эталонных тел правильной формы, подвешенную на тонкую металлическую нить. Измеряя периоды колебаний для двух тел с известными моментами инерции или для одного тела относительно двух различных главных осей инерции, получим:

Y1 = Y0 + Yэ1, (5)

Y2 = Y0 + Yэ2 .

Тогда Yэ1 Yэ2 = Y2 Y1 = , а выражение для вычисления модуля сдвига будет иметь вид

. (6)

Из (4) видно, что для определения модуля сдвига необходимо измерить длину проволоки L, ее диаметр d, массу одного груза m, расстояния l1 и l2 между центрами грузов и соответствующие периоды T1 и T2. Для второго способа (формула (6)) вычисляются по формулам моменты инерции, например, двух различных осей инерции и измеряются соответствующие периоды T1 и T2.

Порядок выполнения работы

Задание 1 (по первому способу)

Измерить длину L и диаметр проволоки d с помощью микрометра или штангенциркуля.

Измерить массу одного груза.

Установить грузы на расстоянии l1 между центрами так, чтобы они были симметричны относительно проволоки.

Измерить период колебаний T1. Для этого измерить время, в течение которого произойдет n полных колебаний, и разделить на n. Повторить измерения 5 – 7 раз.

Таким же образом измерить период T .

Результаты измерений занести в таблицу.

Вычислить погрешности измерения периодов как результаты прямых измерений.

По формуле (4) определить модуль сдвига.

Найти погрешности измерений DG как результат косвенных измерений и занести в таблицу.

п/п

l1 =

l2 =

Примечание

T1i=

DT1i

(DT1i)2

T2i=

DT2 i

(DT2 i)2

1

2

 Окончание таблицы

п/п

l1 =

l2 =

Примечание

T1i=

DT1i

(DT1i)2

T2i=

DT2 i

(DT2 i)2

Среднее

Задание 2 (по второму способу)

Измерить длину L и диаметр проволоки d с помощью микрометра или штангенциркуля.

Измерить массу предложенного эталонного тела.

Вычислить момент инерции тела относительно двух главных осей инерции, измерив для этого необходимые величины.

Определить погрешность в определении момента инерции.

Измерить периоды T1 и T2 для соответствующих моментов инерции, как и в задании 1 п. 4. Правила работы с установкой РРМ-05 смотрите в работе 1-7 или в описании установки.

Результаты измерения занести в таблицу.

Найти погрешность измерений T1 и T2.

По формуле (6) определить модуль сдвига.

Найти погрешность измерений.

Контрольные вопросы

 

Можно ли в качестве эталонного тела использовать: а) шар, б) куб?

Используя основные законы динамики вращательного движения и закон Гука, получить формулы (2), (4), (6).

Как будет зависеть погрешность измерений от массы грузов (качественно)?

Список рекомендуемой литературы

Савельев И.В. Курс общей физики: В 3 т. Т. 1. – М.: Наука, 1989. –352 с.

Стрелков С.П. Механика. – М.: Наука, 1975. – 560 с. 

Методические указания к лабораторным работам по физике. Механика / Под ред. Н.Г. Конопасова; Владим. политехн. ин-т. – Владимир, 1983. – 45 с.


Лабораторные работы по физике, лекции и конспекты