Математика для студентов экономических специальностей

Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

История дизайна и искусства
Дизайн в машиностроении
Архитектура
Интерьеры античности и возраждения в Италии
Интерьеры XIV—XV веков и эпохи классицизма в России
Туризм
Наиболее известные парки развлечений
Софийский собор в Киеве
Архитектура Возрождения
Современная архитектура жилого здания
Архитектура водного туризма
Условия размещения туристских комплексов
Андреевская церковь
Математика
Первая четверть
Контрольная
Решение типовых задач курсовой
Математика для экономистов
Примеры решения задач контрольной работы
Математическое решение экономических задач
Сопромат
Испытание материалов на выносливость
Содержание и задачи курса
Техническая механика
Электротехника
Курсовая по электротехнике
Лабораторная работа
Баланс мощностей
Трехфазные цепи
Физика
Ядерная физика
Физика атомного ядра
Школьный курс физики
Лабораторные работы по физике
Справочник сетевого инженера
Кабельные системы
Транспортные протоколы Internet
Поддержка разных видов трафика
Таблицы маршрутизации
Витая пара
Технологии локальных сетей
Физическая структуризация сети
Поддержка разных видов трафика
Цифровое кодирование
Компрессия данных
Технология Ethernet
Технология Token Ring
Глобальные сети
Основные принципы технологии АТМ
Технология мобильных сетей
Сети на концентраторах (витой паре)
IP-сети. Адресация в IP-сетях
Таблицы маршрутизации в IP-сетях

Протокол PPP

В книге изложены необходимые основы математического аппарата и примеры его использования в современных экономических приложениях: математический анализ функций одной и нескольких переменных, элементы линейной алгебры, основы теории вероятностей и математической статистики, элементы линейного программирования и оптимального управления. Именно такой объем знаний актуален сегодня для лиц, получающих образование по экономическим специальностям (в том числе и второе образование), и соответствует требованиям государственных образовательных стандартов по экономическим дисциплинам.

Основы математики Математический анализ представляет собой основу всей высшей математики. Его содержание составляют дифференциальное и интегральное исчисления одной и нескольких переменных. Множества. Основные обозначения. Операции над множествами Понятие множества является одним из основных в математике. Система, семейство, совокупность — эти термины можно считать синонимами слова "множество". Множество можно определить как совокупность объектов, объединенных по определенному признаку. Например, множество зрителей в данном кинотеатре; множество студентов определенного учебного заведения; совокупность студентов, учащихся на "хорошо" и "отлично" в некоторой школе, совокупность коммерческих банков, имеющих уставный фонд не ниже 100 миллиардов рублей. Множество может содержать конечное или бесконечное число объектов.

Числовые последовательности представляют собой бесконечные множества чисел. Примерами последовательностей могут служить: последовательность всех членов бесконечной геометрической прогрессии, последовательность приближенных значений  (x1 = 1, х2 = 1,4, х3 = 1,41, ...), последовательность периметров правильных n-угольников, вписанных в данную окружность. Уточним понятие числовой последовательности.

Рассмотрим два примера из экономики на использование числа е.

Типовые расчеты (курсовые задания) по математике Теорема Лагранжа Дифференциальное исчисление

Функции одной переменной Определение функциональной зависимости Определение Пусть Х и Y — некоторые числовые множества и пусть каждому элементу x  Х по какому-либо закону f поставлен в соответствие один элемент у  Y. Тогда будем говорить, что определена функциональная зависимость у от x по закону у = f(x). При этом x называют независимой переменной (или аргументом), у — зависимой переменной, множество Х — областью определения (существования) функции, множество Y — областью значений (изменения) функции.

Приведем примеры использования функций в области экономики

Теоремы о пределах функций Арифметические операции над функциями, имеющими предел в точке а, приводят к функциям, также имеющим предел в этой точке.

Бесконечно малые и бесконечно большие функции Определение. Функция f(x) называется бесконечно малой функцией (или просто бесконечно малой) в точке x = а, если предел ее в этой точке равен нулю: f(x) = 0.

Линии второго порядка Рассмотрим здесь три наиболее используемыx вида линий: эллипс, гиперболу и параболу.

Основы дифференциального исчисления Понятие производной Определение производной Пусть функция f(x) определена на некотором промежутке X. Придадим значению аргумента в точке x0  Х произвольное приращение Δx так, чтобы точка x0 + Δx также принадлежала X. Тогда соответствующее приращение функции f(x) составит Δу = f(x0 + Δx) — f(x0).

Понятие дифференциала функции Определение и геометрический смысл дифференциала

Понятие производной n-го порядка Производная f'(x) функции f(x) сама является функцией аргумента х, и по отношению к ней также можно ставить вопрос о производной. Производная от первой производной некоторой функции у = f(x) называется второй производной, или производной второго порядка этой функции. Производная от второй производной называется третьей производной, или производной третьего порядка. Этот процесс можно продолжить. Производные начиная со второй называются производными высших порядков. Для их обозначения используют символы: у", у'", у(4), у(5), ..., у(n) (для второй и третьей производных соответственно еще и у(2) и у(3)) или вместо у пишут f(x): f"(x), f"(х), ..., f(n)(x).

Применение производных в исследовании функций Раскрытие неопределенностей Правило Лопиталя

Исследование функций и построение графиков Признак монотонности функции Одной из существенных характеристик функции является ее поведение на отдельных интервалах — возрастание или убывание. Это определяется приводимой ниже теоремой, доказательство которой мы опускаем.

Схема исследования графика функции Приведем схему исследования поведения функции и построения ее графика. 1. Найти область определения функции. 2. Определить возможный тип симметрии функции: четность или нечетность функции. Функция f(x) называется четной, если выполнено условие симметрии ее графика относительно оси Оу:

Применение в экономике Предельные показатели в микроэкономике Приведем примеры двух предельных показателей в микроэкономике.

Максимизация прибыли Пусть Q — количество реализованного товара, R(Q) — функция дохода; C(Q) — функция затрат на производство товара. В реальности вид этих функций зависит в первую очередь от способа производства, организации инфраструктуры и т.п.

Неопределенный интеграл Первообразная и неопределенный интеграл Предыдущие главы были посвящены одной из основных задач дифференциального исчисления — нахождению производной заданной функции. Множество вопросов математического анализа и приложений в разнообразных науках приводит к другой задаче: по данной функции f(x) найти такую функцию F(x), производная которой равна функции f(x).

Интегрирование по частям Пусть функции и(х) и v(x) определены и дифференцируемы на промежутке Х и функция и'(x)v(x) имеет первообразную на этом промежутке.

Основные правила интегрирования Замена переменной в определенном интеграле Заметим, что при вычислении определенного интеграла с помощью замены переменной нет нужды возвращаться к прежней переменной, как это делалось при вычислении неопределенного интеграла, так как определенный интеграл представляет собой число, которое согласно формуле (7.12) равно значению каждого из рассматриваемых интегралов. Теперь при подстановке следует сначала найти новые пределы интегрирования и затем выполнить необходимые преобразования подынтегральной функции.

Некоторые приложения в экономике Вообще говоря, в экономических задачах переменные меняются дискретно. Для использования определенного интеграла нужно составить некоторую идеализированную модель, предполагающую непрерывное изменение зависимых переменных (функций) и независимых переменных (аргумента). Рассмотрим соответствующие примеры.

Несобственные интегралы При рассмотрении определенного интеграла как предела интегральных сумм предполагалось, что подынтегральная функция, во-первых, задана на конечном отрезке и, во-вторых, ограничена. Данное выше определение определенного интеграла не имеет смысла при невыполнении хотя бы одного из этих условий. Нельзя разбить бесконечный интервал на конечное число отрезков конечной длины; при неограниченной функции интегральная сумма не имеет предела. Тем не менее возможно обобщить понятие определенного интеграла и на эти случаи, с чем и связано понятие несобственного интеграла.

Функции нескольких переменных Евклидово пространство Em Евклидова плоскость и евклидово пространство Как мы знаем, множество всех упорядоченных пар вещественных чисел (x, у) называется координатной плоскостью и каждая точка на ней характеризуется парой своих координат: М(x, у).

Частные производные функции нескольких переменных Частные производные первого порядка Пусть функция двух переменных z = f(x, у) определена в некоторой окрестности точки М(x, у) евклидова пространства Е2. Частная производная функции z = f(x, у) по аргументу x является обыкновенной производной функции одной переменной х при фиксированном значении переменной у и обозначается как

Локальный экстремум функции нескольких переменных Определение и необходимые условия существования локального экстремума Пусть функция z = f(x, y) определена на множестве {М}, а М0 (x0, у0) — некоторая точка этого множества. Определение. Функция z = f(x, у) имеет в точке М0 локальный максимум (минимум), если существует такая окрестность точки M0, принадлежащая {М}, что для любой точки М(х, у) из этой окрестности выполняется неравенство f(M) ≤ f(M0) (f(М) ≥ f(М0)); для случая функции трех и более переменных локальный экстремум определяется аналогично.

Оптимальное распределение ресурсов Рассмотрим типичную задачу оптимального распределения ресурсов на примере функции выпуска и = а0ху2 при допущении, что функция затрат на ресурсы x и у линейна, т.е. имеет вид и = Р1х+Р2у, где P1 и Р2 — соответствующие цены на эти факторы.

На главную