Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математика для экономистов Математический анализ Примеры решения задач контрольной работы Линейные уравнения первого порядка Дифференциальные уравнения второго порядка Линейная модель торговли

Математика для студентов экономических специальностей

Основы дифференциального исчисления

Понятие производной

Определение производной

Пусть функция f(x) определена на некотором промежутке X. Придадим значению аргумента в точке x0  Х произвольное приращение Δx так, чтобы точка x0 + Δx также принадлежала X. Тогда соответствующее приращение функции f(x) составит Δу = f(x0 + Δx) — f(x0).

Определение 1. Производной функции f(x) в точке x0 называется предел отношения приращения функции в этой точке к приращению аргумента при Δx  0 (если этот предел существует).

Для обозначения производной функции употребимы символы у' (x0) или f'(x0):

Если в некоторой точке x0 предел (4.1) бесконечен:

то говорят, что в точке x0 функция f(x) имеет бесконечную производную.

Если функция f(x) имеет производную в каждой точке множества X, то производная f'(x) также является функцией от аргумента х, определенной на X.

Геометрический смысл производной

Для выяснения геометрического смысла производной нам понадобится определение касательной к графику функции в данной точке.

Определение 2. Касательной к графику функции у = f(x) в точке М называется предельное положение секущей MN, когда точка N стремится к точке М по кривой f(x).

Пусть точка М на кривой f(x) соответствует значению аргумента x0, а точка N — значению аргумента x0 + Δx (рис. 4.1). Из определения касательной следует, что для ее существования в точке x0 необходимо, чтобы существовал предел , который равен углу наклона касательной к оси Оx. Из треугольника MNA следует, что

Если производная функции f(x) в точке x0 существует, то, согласно (4.1), получаем

Отсюда следует наглядный вывод о том, что производная f'(x0) равна угловому коэффициенту (тангенсу угла наклона к положительному направлению оси Ох) касательной к графику функции у = f(x) в точке М(x0, f(x0)). При этом угол наклона касательной определяется из формулы (4.2):

Физический смысл производной

Предположим, что функция l = f(t) описывает закон движения материальной точки по прямой как зависимость пути l от времени t. Тогда разность Δl = f(t + Δt) - f(t) — это путь, пройденный за интервал времени Δt, а отношение Δl/Δt — средняя скорость за время Δt. Тогда предел определяет мгновенную скорость точки в момент времени t как производную пути по времени.

В определенном смысле производную функции у = f(x) можно также трактовать как скорость изменения функции: чем больше величина f'(x), тем больше угол наклона касательной к кривой, тем круче график f(x) и быстрее растет функция.

Правая и левая производные

По аналогии с понятиями односторонних пределов функции вводятся понятия правой и левой производных функции в точке.

Определение 3. Правой (левой) производной функции у = f(x) в точке x0 называется правый (левый) предел отношения (4.1) при Δx  0, если этот предел существует.

Для обозначения односторонних производных используется следующая символика:

Если функция f(x) имеет в точке x0 производную, то она имеет левую и правую производные в этой точке, которые совпадают.

Приведем пример функции, у которой существуют односторонние производные в точке, не равные друг другу. Это f(x) = |x|. Действительно, в точке х = 0 имеем f’+(0) = 1, f'-(0) = -1 (рис. 4.2) и f’+(0) ≠ f’-(0), т.е. функция не имеет производной при х = 0.

Операцию нахождения производной функции называют ее дифференцированием; функция, имеющая производную в точке, называется дифференцируемой.

Связь между дифференцируемостью и непрерывностью функции в точке устанавливает следующая теорема.

ТЕОРЕМА 1. Если функция дифференцируема в точке x0, то она и непрерывна в этой точке.

Обратное утверждение неверно: функция f(x), непрерывная в точке, может не иметь производную в этой точке. Таким примером является функция у = |x|; она непрерывна в точке x = 0, но не имеет производной в этой точке.

Таким образом, требование дифференцируемости функции является более сильным, чем требование непрерывности, поскольку из первого автоматически вытекает второе.

Уравнение касательной к графику функции в данной точке

Как было указано в разделе 3.9, уравнение прямой, проходящей через точку М(x0, у0) с угловым коэффициентом k имеет вид 

Пусть задана функция у = f(x). Тогда поскольку ее производная в некоторой точке М(x0, у0) является угловым коэффициентом касательной к графику этой функции в точке М, то отсюда следует, что уравнение касательной к графику функции f(x) в этой точке имеет вид


Основные правила интегрирования