Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математика для экономистов Математический анализ Примеры решения задач контрольной работы Линейные уравнения первого порядка Дифференциальные уравнения второго порядка Линейная модель торговли

Математика для студентов экономических специальностей

Интегрирование по частям

ТЕОРЕМА 2. Пусть функции и(х) и v(x) определены и дифференцируемы на промежутке Х и функция и'(x)v(x) имеет первообразную на этом промежутке. Тогда функция u(x)v'(x) также имеет первообразную на промежутке X, причем справедлива формула

С учетом вида дифференциалов функций v'(x)dx = dv и u'(x)dx = du равенство (6.2) часто используют в форме

Равенство (6.2) (или (6.3)) называется формулой интегрирования по частям.

В интегрировании по частям самым сложным является выбop в подынтегральном выражении сомножителя v'(x) dx = dv. Под знак дифференциала d можно в принципе внести все что угодно; однако выбор должен быть таким, чтобы интеграл в правой части (6.2) был проще исходного, а не сложнее. В этом смысле метод интегрирования по частям позволяет свести интеграл dv к интегралу du, вычислить который существенно проще. Рассмотрим примеры нахождения интегралов методом интегрирования по частям.

Пример 8. dx.

Решение. Здесь берем и(х) = ln x, dv = dx, т.е. v = х. По формуле (6.2) получаем

В общем случае интегралы вида ln х dx, где п ≠ 1 — целое число, берутся только интегрированием по частям: и = ln x, xndx = dv, т.е. v = хn+1 /(п + 1). Аналогичным образом берутся и интегралы вида arctg x dx.

Пример 9. dx.

Решение. В этом случае и = х, eхdx = dv = d(ex), тогда по формуле (6.2) имеем

Интегралы вида dx, где п > 0 — целое число и k ≠ 0 — любое число, берутся n-кратным интегрированием по частям до исчезновения степени х в подынтегральной функции; при этом каждый раз под знак d вносится еkx, т.е. ekxdx = dv = d(еkx).

Ррешение. Интегралы вида cos kx dx и sin kx dx, где k — любое число и п > 0 — целое число, вычисляются так же, как и интеграл общего вида, приведенный в примере 1. Под знак d каждый раз вносится тригонометрическая функция, и процедура интегрирования по частям повторяется n раз:

cos kx dx = dv = d (sin kx), затем sin kx dx = -d(cos kx) и т.д.

В данном случае мы имеем

Введем понятие рациональной функции от двух переменных. Это функция, полученная из переменных и и v путем проведения над ними арифметических операций. Например, функция

является рациональной от переменных u и v. В свою очередь переменные и и v также могут являться функциями. Например,

Рациональная функция от sin х и cos х

Рассмотрим интеграл вида

где R — рациональная функция. Этот интеграл рационализируется универсальной подстановкой

Действительно,

Подстановка формул (6.5) в интеграл (6.4) дает

где R1(t) — другая рациональная функция аргумента t. Рассмотрим примеры вычисления интегралов, содержащих рациональные функции от sin x и cos x.

Решение. Подставляя сюда формулы (6.5), после очевидных упрощений получаем

Пример 12.  dx, т и п — натуральные числа.

Решение. Универсальная подстановка приведет здесь к громоздким выкладкам; гораздо удобнее применить метод замены переменной. В зависимости от четности m и п употребимы три следующих варианта.

1) m — четное, n — нечетное, подстановка t = sin x.

2) т — нечетное, n — четное; подстановка t = cos x.

3) m и n — оба нечетные; любая из двух подстановок 1 или 2.

4) m и п — оба четные; понизить степени тригонометрических функций и в полученной сумме проверить каждое слагаемое по пп. 1-3.

Например, найти интеграл dx.

Согласно п. 2 выполним подстановку t = cos x; тогда dt = - sin x dx, sin4 x = (1 — t2)2; отсюда имеем

Рациональная функция от еx

Интеграл вида

рационализируется подстановкой

Пример 13. Найти интеграл . Применяя подстановку (6.6), получим

УПРАЖНЕНИЯ

Вычислить интегралы методом непосредственного интегрирования.

Вычислить интегралы методом подстановки.

Вычислить интегралы методом интегрирования по частям.


Основные правила интегрирования