Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математика для экономистов Математический анализ Примеры решения задач контрольной работы Линейные уравнения первого порядка Дифференциальные уравнения второго порядка Линейная модель торговли

Математика для студентов экономических специальностей

Несобственные интегралы

При рассмотрении определенного интеграла как предела интегральных сумм предполагалось, что подынтегральная функция, во-первых, задана на конечном отрезке и, во-вторых, ограничена. Данное выше определение определенного интеграла не имеет смысла при невыполнении хотя бы одного из этих условий. Нельзя разбить бесконечный интервал на конечное число отрезков конечной длины; при неограниченной функции интегральная сумма не имеет предела. Тем не менее возможно обобщить понятие определенного интеграла и на эти случаи, с чем и связано понятие несобственного интеграла.

Определение. Пусть функция f(x) определена на промежутке [а, +) и интегрируема на любом отрезке [a, R], R > 0, так что интеграл

имеет смысл. Предел этого интеграла при R  называется несобственным интегралом с бесконечным пределом интегрирования:

Если этот предел конечен, говорят, что несобственный интеграл (7.16) сходится, а функцию f(x) называют интегрируемой на бесконечном промежутке [а, ); если же предел в (7.16) бесконечен или не существует, то говорят, что несобственный интеграл расходится.

Аналогичным образом вводится понятие несобственного интеграла по промежутку (-, b]:

Наконец, несобственный интеграл с двумя бесконечными пределами можно определить как сумму несобственных интегралов (7.16) и (7.17):

где с — любое число.

Геометрический смысл несобственного интеграла первого рода заключается в следующем: это площадь бесконечной области (рис. 7.8), ограниченной сверху неотрицательной функцией f(x), снизу — осью Оx, слева — прямой х = а.

Рассмотрим несколько примеров несобственных интегралов.

Здесь пришлось разделить исходный интеграл на два и к каждому из них применить определение несобственного интеграла.

Пример 4. , где α — некоторое положительное число.

Решение. Рассмотрим разные случаи для числа α.

1. При α = 1 для любого R > 0 имеем

т.е. конечного предела не существует и несобственный интеграл расходится.

2. При α ≠ 1 для любого R > 0 получаем

Следовательно, данный интеграл сходится при α > 1 и расходится при α ≤ 1.

В приведенных выше примерах сначала с помощью первообразной вычислялся интеграл по конечному промежутку, а затем осуществлялся переход к пределу. Между тем если для функции f(x) существует первообразная F(x) на всем промежутке интегрирования [а,), то по формуле Ньютона-Лейбница

Отсюда следует, что несобственный интеграл существует (сходится) в том и только в том случае, когда существует конечный предел

и тогда можно записать:

Аналогичный вывод справедлив и для несобственных интегралов вида (7.17) и (7.18):

Иными словами, формула Ньютона-Лейбница (основная формула интегрального исчисления) применима и в случае, когда пределы интегрирования бесконечны.

УПРАЖНЕНИЯ

Вычислить определенные интегралы.

Найти площади фигур, ограниченных следующими линиями.

Найти объемы тел, образованных вращением вокруг оси Ох фигуры, ограниченной следующими линиями.

Вычислить несобственные интегралы в случае их сходимости.

7.32. Найти площадь, заключенную между кривой у = и ее асимптотой при х ≥ 0.

7.33. Найти объем тела, образованного вращением вокруг оси Ох дуги кривой у = e-x от х = 0 до х = +.

Решить задачи с экономическим содержанием.

7.34. Найти стоимость перевозки М т груза по железной дороге на расстояние 1 км при условии, что тариф у перевозки одной тонны убывает на а р. на каждом последующем километре.

7.35. Мощность у потребляемой городом электроэнергии выражается формулой

где t — текущее время суток. Найти суточное потребление электроэнергии при а = 15000 кВт, b = 12000 кВт.

Функции нескольких переменных Евклидово пространство Em Евклидова плоскость и евклидово пространство Как мы знаем, множество всех упорядоченных пар вещественных чисел (x, у) называется координатной плоскостью и каждая точка на ней характеризуется парой своих координат: М(x, у).

Частные производные функции нескольких переменных Частные производные первого порядка Пусть функция двух переменных z = f(x, у) определена в некоторой окрестности точки М(x, у) евклидова пространства Е2. Частная производная функции z = f(x, у) по аргументу x является обыкновенной производной функции одной переменной х при фиксированном значении переменной у и обозначается как

Локальный экстремум функции нескольких переменных Определение и необходимые условия существования локального экстремума Пусть функция z = f(x, y) определена на множестве {М}, а М0 (x0, у0) — некоторая точка этого множества. Определение. Функция z = f(x, у) имеет в точке М0 локальный максимум (минимум), если существует такая окрестность точки M0, принадлежащая {М}, что для любой точки М(х, у) из этой окрестности выполняется неравенство f(M) ≤ f(M0) (f(М) ≥ f(М0)); для случая функции трех и более переменных локальный экстремум определяется аналогично.

Оптимальное распределение ресурсов Рассмотрим типичную задачу оптимального распределения ресурсов на примере функции выпуска и = а0ху2 при допущении, что функция затрат на ресурсы x и у линейна, т.е. имеет вид и = Р1х+Р2у, где P1 и Р2 — соответствующие цены на эти факторы.

Элементы теории обыкновенных дифференциальных уравнений Дифференциальные уравнения занимают особое место в математике и имеют многочисленные приложения в большом спектре наук. Исследования природных процессов и изучение закономерностей общественных процессов приводят к построению математических моделей, основой которых являются дифференциальные уравнения. В дифференциальных уравнениях неизвестная функция содержится вместе со своими производными. Основной задачей теории дифференциальных уравнений является изучение функций, представляющих собой решения этих уравнений.

Уравнения с разделяющимися переменными Дифференциальное уравнение вида где f1(x) и f2(y) — непрерывные функции, называется уравнением с разделяющимися переменными. Подчеркнем, что правая часть уравнения представляет собой произведение, в котором один сомножитель зависит только от х, а другой — только от у. Метод решения такого вида уравнений носит название разделения переменных


Основные правила интегрирования