Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математика для экономистов Математический анализ Примеры решения задач контрольной работы Линейные уравнения первого порядка Дифференциальные уравнения второго порядка Линейная модель торговли

Математика примеры решения задач контрольной работы

Системы линейных алгебраических уравнений

Этот раздел является одним из основных в алгебре. Нет такой отрасли науки и приложений, где в том или ином виде не использовались бы системы линейных алгебраических уравнений. При решении экономических задач системы линейных уравнений наиболее употребимы как в аппарате исследования, так и при рассмотрении частных проблем.

Основные понятия

Общий вид и свойства системы уравнений

Система т линейных уравнений с п неизвестными (переменными) x1, x2, ..., xп имеет вид

Здесь aij и bi — произвольные числа (i = 1, 2,..., m; j = 1, 2, ..., n), которые называются соответственно коэффициентами при неизвестных и свободными членами уравнений (15.1). Первый индекс у коэффициентов при неизвестных означает номер уравнения, второй индекс соответствует номеру неизвестного xi.

Решением системы уравнений (15.1) называется набор п чисел x1 = α1, x2 = α2, … , xn = αn, при подстановке которых в эту систему каждое уравнение данной системы превращается в тождество.

Система уравнений (15.1) называется совместной, если она имеет хотя бы одно решение; если система не имеет решений, она называется несовместной. Совместная система уравнений имеет либо одно решение, и в таком случае она называется определенной, либо, если у нее больше одного решения, она называется неопределенной.

Системы уравнений вида (15.1) называются эквивалентными, если они имеют одно и то же множество решений. Элементарные преобразования исходной системы приводят к эквивалентной системе. К элементарным преобразованиям относятся:

вычеркивание уравнения 0x1 + 0x2 + ... + 0хn = 0 — нулевой строки;

перестановка уравнений или слагаемых aijxj в уравнениях;

прибавление к обеим частям одного уравнения соответственно обеих частей другого уравнения этой системы, умноженного на любое действительное число;

удаление уравнений, являющихся линейными комбинациями других уравнений системы.

Последнее свойство вытекает из третьего свойства: если какое-либо уравнение представляет собой линейную комбинацию других уравнений, то из него можно сформировать нулевую строку.

Матричная форма системы уравнений

Сведем коэффициенты при неизвестных в системе уравнений (15.1) в матрицу

Эта матрица состоит из m строк и п столбцов и называется матрицей системы. Введем в рассмотрение две матрицы-столбца: матрицу неизвестных Х и матрицу свободных членов В:

Х и В представляют собой векторы-столбцы, однако в целях единого подхода в рамках матричной алгебры удобнее трактовать их именно как матрицы, состоящие соответственно из п и m строк и одного столбца.

Тогда систему линейных уравнений (15.1) можно записать в матричной форме, поскольку размер матрицы А равен т х n, а размер Х — n х 1 и, значит, произведение этих матриц имеет смысл:

Произведение матриц АХ является, как и В, матрицей-столбцом размером т х 1, состоящей из левых частей уравнений системы (15.1). Все уравнения этой системы вытекают из уравнения (15.3) в силу определения равенства двух матриц (п. 13.1).

Введем в рассмотрение еще одну матрицу; дополним матрицу системы А столбцом свободных членов и получим новую матрицу размером т х (n + 1):

Матрица АВ называется расширенной матрицей системы. Эта матрица играет важную роль в вопросе о разрешимости системы уравнений.

ТЕОРЕМА 1 (Кронекера-Капелли, критерий совместности системы). Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы.

Доказательство этой теоремы мы не приводим.

15.2. Методы решения систем линейных уравнений

Метод обратной матрицы и теорема Крамера

В этом разделе мы рассмотрим частный случай системы (15.1), когда число уравнений равно числу неизвестных, т.е. т = n. Система уравнений имеет вид

Составим квадратную матрицу А порядка n этой системы:

1. В матричной форме система уравнений (15.5) имеет вид

где матрицы Х и В имеют размер n х 1. Пусть матрица системы А является невырожденной, т.е. существует обратная матрица А-1. Умножив обе части этого уравнения слева на А-1, получаем решение системы (15.5) в матричной форме:

Вычисление обратной матрицы по заданной матрице А производится по довольно сложным формулам. В случае когда порядок n матриц А и А-1 достаточно велик, вычисление обратной матрицы может быть очень громоздким.

2. Другой метод решения системы уравнений (15.5) основан на теореме Крамера. Составим определитель матрицы системы А:

который называется также определителем системы. Заменим в этом определителе j-й столбец на столбец свободных членов В, т.е. получим этой заменой другой определитель, который обозначим Δj:

ТЕОРЕМА 2 (правило Крамера). Пусть Δ — определитель матрицы системы А, а Δj — определитель, полученный из определителя Δ заменой j-го столбца столбцом свободных членов В. Тогда если Δ ≠ 0, то система линейных уравнений (15.5) имеет единственное решение, определяемое по формулам

Формулы вычисления неизвестных (15.6) — решения системы (15.5) — носят название формул Крамера.

Пример 1. Найти решение системы уравнений

Решение. Составим и вычислим определители системы Δ и Δj (j = x, y, z):

Определитель системы отличен от нуля, стало быть, она имеет единственное решение, которое вычисляется по формулам (15.6):

Решение системы общего вида

Пусть задана система линейных уравнений общего вида (15.1), где т ≤ n, т.е. число неизвестных не меньше числа уравнений. Представим общий порядок решения этой системы.

1. Необходимо определить совместность системы, т.е. определить сначала ранги матрицы системы А и расширенной матрицы AB. По теореме Кронекера-Капелли если ранги этих матриц не совпадают, то система несовместна и тогда нет смысла ее решать. Если же ранги матриц А и АB равны, то система (15.1) совместна.

Определение 1. Рангом совместной системы линейных алгебраических уравнений называется ранг ее матрицы.

2. Пусть система (15.1) совместна и ранг ее равен r. Выделим в матрице системы (15.2) некоторый базисный минор; предположим, что именно первые r строк матриц А и АB являются базисными. Тогда по теореме о базисном миноре остальные строки матрицы являются линейными комбинациями остальных строк. В свою очередь это означает, что в системе (15.1) первые r уравнений, соответствующие базисным строкам матрицы А, являются базисными, а остальные — их линейными комбинациями. Тогда эти (m — r) уравнений можно удалить из системы, причем в результате указанных элементарных преобразований мы получаем эквивалентную систему:

3. Система (15.7) характерна тем, что ее ранг равен числу уравнений в ней, причем r ≤ n, т.е. ранг не превосходит числа неизвестных. Поэтому возможны два случая: либо r = n, либо r < n. В первом случае система (15.7) имеет квадратную невырожденную матрицу порядка r (см. выше) и, согласно теореме Крамера, существует единственное решение этой системы. Иными словами, если ранг системы равен числу неизвестных, то система имеет единственное решение, т.е. она является определенной.

4. Рассмотрим теперь случай, когда r < п. Перенесем в правые части уравнений (15.7) все слагаемые, содержащие неизвестные xr+1, xr+2, …, xп. Тогда система принимает вид

Неизвестным xr+1, ..., xп можно придавать любые значения, и потому они называются свободными. Неизвестные х1, x2, ..., xr соответствующие базисным столбцам, называются базисными. Из системы (15.8) легко найти выражения базисных неизвестных через свободные, согласно теореме Крамера, рассматривая правые части этих уравнений как элементы столбца свободных членов, содержащие xr+1, xr+2,…, хп. Можно показать, что базисные неизвестные x1, х2, ..., xr линейно выражаются через свободные неизвестные. Поскольку свободные неизвестные могут принимать любые значения, то в случае когда ранг совместной системы меньше числа неизвестных, эта система является неопределенной: она имеет бесчисленное множество решений.


Основные правила интегрирования