Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математика для экономистов Математический анализ Примеры решения задач контрольной работы Линейные уравнения первого порядка Дифференциальные уравнения второго порядка Линейная модель торговли

Математика примеры решения задач контрольной работы

Линейная модель торговли

Одним из примеров экономического процесса, приводящего к понятию собственного числа и собственного вектора матрицы, является процесс взаимных закупок товаров. Будем полагать, что бюджеты п стран, которые мы обозначим соответственно x1, x2, … , xn расходуются на покупку товаров. Мы будем рассматривать линейную модель обмена, или, как ее еще называют, модель международной торговли.

Пусть aij — доля бюджета xj, которую j-я страна тратит на закупку товаров у i-й страны. Введем матрицу коэффициентов aij:

Тогда если весь бюджет расходуется только на закупки внутри страны и вне ее (можно это трактовать как торговый бюджет), то справедливо равенство

Матрица (16.12) со свойством (16.13), в силу которого сумма элементов ее любого столбца равна единице, называется структурной матрицей торговли. Для i-й страны общая выручка от внутренней и внешней торговли выражается формулой

Условие сбалансированной (бездефицитной) торговли формулируется естественным образом: для каждой страны ее бюджет должен быть не больше выручки от торговли, т.е. Pi ≥ xi:, или

Докажем, что в условиях (16.14) не может быть знака неравенства. Действительно, сложим все эти неравенства при i от 1 до n. Группируя слагаемые с величинами бюджетов xj, получаем

Нетрудно видеть, что в скобках стоят суммы элементов матрицы А по ее столбцам от первого до последнего, которые равны единице по условию (16.13). Стало быть, мы получили неравенство

откуда возможен только знак равенства.

Таким образом, условия (16.14) принимают вид равенств:

Введем вектор бюджетов , каждая компонента которого характеризует бюджет соответствующей страны; тогда систему уравнений (16.15) можно записать в матричной форме

Это уравнение означает, что собственный вектор структурной матрицы А, отвечающий ее собственному значению λ = 1, состоит из бюджетов стран бездефицитной международной торговли.

Перепишем уравнение (16.16) в виде, позволяющем определить :

Пример. Структурная матрица торговли четырех стран имеет вид:

Найти бюджеты этих стран, удовлетворяющие сбалансированной бездефицитной торговле при условии, что сумма бюджетов задана:

Решение. Необходимо найти собственный вектор , отвечающий собственному значению λ = 1 заданной структурной матрицы А, т.е. решить уравнение (16.17), которое в нашем случае имеет вид

Поскольку ранг этой системы равен трем, то одна из неизвестных является свободной переменной и остальные выражаются через нее. Решая систему методом Гаусса, находим компоненты собственного вектора :

Подставив найденные значения в заданную сумму бюджетов, найдем величину с: с = 1210, откуда окончательно получаем искомые величины бюджетов стран при бездефицитной торговле (в условных денежных единицах):

УПРАЖНЕНИЯ

16.1. По данным табл. 16.1 составить новую таблицу производственно-экономических показателей по следующим условиям:

— количество изделий всех видов увеличивается на 20%,

— норма времени изготовления по всем изделиям уменьшается на 20%,

— цена на все виды изделий уменьшается на 10%.

Найти ежесуточные показатели, указанные в задаче 1 п. 16.1, а также их процентные изменения.

16.2. По данным табл. 16.2 составить новую таблицу по следующим условиям:

— дневная производительность всех предприятий увеличивается на 100%,

— число рабочих дней в году для 1-го предприятия увеличивается на 50%, а для остальных — на 40%,

— цены на виды сырья уменьшаются соответственно на 10, 20 и 30%.

Определить суммы кредитования предприятий и их соответствующие процентные изменения.

16.3. Отрасль состоит из 4-х предприятий; вектор выпуска продукции и матрица внутреннего потребления имеют вид

Найти вектор объемов конечного продукта, предназначенного для реализации вне отрасли.

16.4. Предприятие выпускает три вида продукции с использованием трех видов сырья, характеристики производства указаны в следующей таблице:

Найти объем выпуска продукции каждого вида при заданных запасах сырья.

16.5. В условиях примера 2 п. 16.2 определить прирост объемов валовых выпусков по каждой отрасли (в процентах), если конечное потребление увеличить по отраслям соответственно на 30, 10 и 50%. Решить задачу методом обратной матрицы и методом Гаусса.

16.6. Структурная матрица торговли трех стран имеет вид

Найти бюджеты первой и второй стран, удовлетворяющие сбалансированной бездефицитной торговле при условии, что бюджет третьей страны равен 1100 усл. ед.


Основные правила интегрирования