Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математика для экономистов Математический анализ Примеры решения задач контрольной работы Линейные уравнения первого порядка Дифференциальные уравнения второго порядка Линейная модель торговли

Математика примеры решения задач контрольной работы

Элементы теории вероятностей

События, происходящие в окружающем нас мире, можно разделить на три вида: достоверные, невозможные и случайные. Достоверным относительно комплекса условий S называется событие, которое обязательно произойдет при осуществлении этого комплекса условий. Например, если гладкий желоб с лежащим внутри него тяжелым шариком наклонить, то шарик обязательно покатится по желобу в сторону уклона. Невозможным называется событие, которое заведомо не произойдет при осуществлении комлекса условий S. Например, из герметически изолированного сосуда вода не может вылиться. Случайным относительно комплекса условий S называется событие, которое при осуществлении указанного комплекса условий может либо произойти, либо не произойти. Например, если вы уронили фарфоровую чашку на пол, то она может как разбиться, так и остаться неповрежденной.

Теория вероятностей имеет дело со случайными событиями. Однако она не может предсказать, произойдет единичное событие или нет. Теория вероятностей изучает вероятностные закономерности массовых однородных случайных событий. Ее методы получили широкое распространение в различных областях естествознания и в прикладных проблемах техники. Теория вероятностей легла в основу теории массового обслуживания и теории надежности. В последние годы аппарат теории вероятностей активно используется в экономике.

Основные понятия теории вероятностей

Некоторые формулы комбинаторики

Пусть задано конечное множество элементов некоторой природы. Из них можно составлять определенные комбинации, количества которых изучает комбинаторика. Некоторые ее формулы используются в теории вероятности; приведем их.

Комбинации, состоящие из одной и той же совокупности п различных элементов и отличающиеся только порядком их расположения, называются перестановками. Число всех возможных перестановок определяется произведением чисел от единицы до п:

Пример 1. Сколько четырехзначных чисел можно составить из цифр 1, 2, 3 и 4 с использованием всех указанных цифр в каждом числе ?

Решение. Искомое число равно Р4 = 4! = 1 ∙ 2 ∙ 3 ∙ 4 = 24.

Комбинации по т элементов, составленные из п различных элементов (m ≤ п), отличающиеся друг от друга либо элементами, либо их порядком, называются размещениями. Число всевозможных размещений

Пример 2. Сколько трехзначных чисел можно составить из семи различных цифр при отсутствии среди них нуля ?

Решение. Искомое количество цифр

Комбинации, содержащие по т элементов каждая, составленные из п различных элементов (m ≤ п) и различающиеся хотя бы одним элементом, называются сочетаниями. Число сочетаний дается формулой

Можно показать, что справедливы формулы

В частности, первую из формул удобно использовать в расчетах, когда т > п/2.

Напомним формулу бинома Ньютона, в которой участвуют коэффициенты (17.1):

Пример 3. Сколькими способами можно выбрать а) по три карты, б) по 32 карты из колоды, содержащей 36 игральных карт?

Решение. Искомое число способов:

Виды случайных событий

Выше было введено определение случайного события. Обычно в теории вероятностей вместо "совокупности условий" употребляют термин "испытание", и тогда событие трактуется как результат испытания. Например, стрельба по мишени: выстрел — это испытание, попадание в мишень — это событие. Другой пример: подбрасывание монеты вверх — это испытание, выпадение орла (или решки) — это событие.

Определение 1. События называют несовместными, если в одном и том же испытании появление одного из них исключает появление других. Например, выпадение орла при подбрасывании монеты исключает появление в этом же испытании решки и наоборот.

Определение 2. Несколько событий образуют полную группу, если в результате испытания появление хотя бы одного из них является достоверным событием. Например, при произведении выстрела по мишени (испытание) обязательно будет либо попадание, либо промах; эти два события образуют полную группу.

Следствие. Если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий.

Этот частный случай будет использован далее.

Классическое определение вероятности

Назовем каждый из возможных результатов испытания элементарным событием, или исходом. Те элементарные исходы, которые интересуют нас, называются благоприятными событиями.

Определение 3. Отношение числа благоприятствующих событию А элементарных исходов к общему числу равновозможных несовместных элементарных исходов, образующих полную группу, называется вероятностью события А.

Вероятность события А обозначается Р(А). Понятие вероятности является одним из основных в теории вероятностей. Данное выше определение является классическим. Из него вытекают некоторые свойства.

Свойство 1. Вероятность достоверного события равна единице.

Свойство 2. Вероятность невозможного события равна нулю.

Свойство 3. Вероятность случайного события есть положительное число:

Следовательно, вероятность любого события удовлетворяет неравенству

Отметим, что современные курсы теории вероятностей основаны на теоретико-множественном подходе, в котором элементарные события являются точками пространства элементарных событий Ω; при этом событие А отождествляется с подмножеством элементарных исходов, благоприятствующих этому событию, А   Ω.

Приведем примеры непосредственного вычисления вероятностей.

Пример 4. В коробке лежит 10 шаров: 6 белых и 4 черных. Найти вероятность того, что из пяти взятых наугад шаров будет 4 белых.

Решение. Найдем число благоприятных исходов: число способов, которыми можно взять 4 белых шара из 6 имеющихся, равно C = C = . = 15. Общее число исходов определяется числом сочетаний из 10 по 5: C = 252. Согласно определению 3 искомая вероятность Р = 15/252 ≈ 0,06.

Пример 5. Какова вероятность того, что при заполнении карточки спортивной лотереи "6 из 36" будет угадано 4 номера?

Решение. Общее число исходов равно C = 1947792. Число благоприятных исходов равно С = 15. Отсюда искомая вероятность равна 7,7 ∙ 10-6.

Пример 6. В ящике находится 10 стандартных и 5 нестандартных деталей. Какова вероятность, что среди наугад взятых 6 деталей будет 4 стандартных и 2 нестандартных?

Решение. Общее число исходов равно С. Число благоприятных исходов определяется произведением СС, где первый сомножитель соответствует числу вариантов изъятия из ящика 4-х стандартных деталей из 10, а второй — числу вариантов изъятия из ящика 2-х нестандартных деталей из пяти. Отсюда следует, что искомая вероятность равна


Основные правила интегрирования