Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математическое решение экономических задач Элементы линейного программирования Транспортная задача Динамическое программирование Принятие решений и элементы планирования

Математика примеры решения задач контрольной работы

Основы оптимального управления

Управление и планирование являются наиболее сложными функциями в работе предприятий, фирм, служб администраций всех уровней. Долгое время они являлись монополией человека с соответствующей подготовкой и опытом работы. Совершенствование науки, техники, разделение труда усложнили принятие решений в управлении и планировании.

Для принятия обоснованного решения необходимо иметь и обработать большое количество информации, определяемое иногда астрономическими цифрами. Принятие ответственных решений, как правило, связано с большими материальными ценностями. В настоящее время недостаточно знать путь, ведущий к достижению цели. Необходимо из всех возможных путей выбрать наиболее экономичный, который наилучшим образом соответствует поставленной задаче.

Появление цифровых вычислительных машин и персональных компьютеров создало огромные возможности для развития науки, совершенствования методов планирования и управления производством. Однако без строгих формулировок задач, без математического описания процессов современный уровень управления и планирования не может быть достигнут.

Задачи управления и планирования обычно сводятся к выбору некоторой системы параметров и системы функций, которые приводят к экстремальным задачам следующего вида.

Требуется найти максимум функции

при условиях:

где f, gi — функции, x1, x2, ..., xп — параметры управления.

Выражение (а) называется функцией цели. Условия (b) и (с) представляют собой ограничения поставленной задачи. Условия (с) справедливы для многих задач, особенно экономических, когда параметры управления (xj) по своему физическом смыслу не могут быть отрицательными. Среди условий задачи могут быть равенства.

Математическая дисциплина, занимающаяся изучением экстремальных (максимальных или минимальных) задач управления, планирования и разработкой методов их решения, получила название математического программирования.

Основное отличие задач математического программирования от условных экстремальных задач, рассмотренных в части 6, заключается в наличии неравенств в системе ограничений. Поэтому методы решения задач на условный экстремум с помощью множителей Лагранжа не могут быть применены.

В зависимости от вида функции цели и ограничений математическое программирование делится на линейное и нелинейное.

Наиболее разработанным разделом математического программирования является линейное программирование.

В задачах линейного программирования возможны случаи, когда параметры управления могут принимать лишь целые дискретные значения. При решении подобных задач используется целочисленное программирование.

В некоторых случаях исходные параметры задачи могут изменяться в некоторых пределах, для их решения применяется параметрическое программирование.

В настоящее время не существует общих и достаточно эффективных методов решения задач нелинейного программирования. Лишь для определенного класса нелинейных задач, система ограничений которых линейна, а целевая функция нелинейна, но обладает свойством выпуклости, разработаны достаточно эффективные методы, получившие название методов выпуклого программирования.

На практике часто приходится сталкиваться с ситуациями, в которых необходимо принимать решения при наличии двух или более сторон, имеющих различные цели. Результаты любого действия каждой из сторон зависят от решений партнеров. В экономике подобные ситуации встречаются довольно часто. Для решения задач с конфликтными ситуациями используют математические методы теории игр.

Динамическое программирование — один из разделов методов оптимизации, в котором процесс принятия решения может быть разбит на отдельные этапы. В основе метода лежит принцип оптимальности, разработанный Р. Беллманом.

Сетевые модели, в основе которых лежит теория графов, позволяют проводить их оптимизацию, а также совокупность расчетных и организационных мероприятий по управлению комплексами работ при создании новых изделий и технологий.

Цель изучения системы массового обслуживания состоит в том, чтобы контролировать их характеристики для проведения оптимизации системы в целом.

Рассмотрение моделей управления запасами преследует цель выбора для предприятий оптимальных расходов на доставку, хранение комплектующих материалов и ресурсов, необходимых для изготовления изделий.

Элементы линейного программирования Общая постановка задачи Определение. Линейное программирование — наука о методах исследования и отыскания экстремальных (наибольших и наименьших) значений линейной функции, на неизвестные которой наложены линейные ограничения. Эта линейная функция называется целевой, а ограничения, которые математически записываются в виде уравнений или неравенств, называются системой ограничений.

Элементы аналитической геометрии в n-мерном пространстве Дано n-мерное пространство, точки которого имеют координаты (x1, x2, . . . ,xп). Определение. Множество точек n-мерного пространства, координаты которых удовлетворяют уравнению где хотя бы одно из чисел а1, a2, ..., an отлично от нуля, называется гиперплоскостью п-мерного пространства.

Решение систем m линейных неравенств с двумя переменными

Графический метод Постановка задачи Наиболее простым и наглядным методом линейного программирования является графический метод. Он применяется для решения задач ЛП с двумя переменными, заданными в неканонической форме, и многими переменными в канонической форме при условии, что они содержат не более двух свободных переменных. С геометрической точки зрения в задаче линейного программирования ищется такая угловая точка или набор точек из допустимого множества решений, на котором достигается самая верхняя (нижняя) линия уровня, расположенная дальше (ближе) остальных в направлении наискорейшего роста.

Экономический анализ задач с использованием графического метода Проведем экономический анализ рассмотренной выше задачи по производству мороженого.

Симплексный метод Метод является универсальным, так как позволяет решить практически любую задачу линейного программирования, записанную в каноническом виде. Идея симплексного метода (метода последовательного улучшения плана) заключается в том, что начиная с некоторого исходного опорного решения осуществляется последовательно направленное перемещение по опорным решениям задачи к оптимальному. Значение целевой функции при этом перемещении для задач на максимум не убывает. Так как число опорных решений конечно, то через конечное число шагов получим оптимальное опорное решение. Опорным решением называется базисное неотрицательное решение.


Экономический анализ транспортных задач