Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Математическое решение экономических задач Элементы линейного программирования Транспортная задача Динамическое программирование Принятие решений и элементы планирования

Математическое решение экономических задач

Транспортная параметрическая задача

Задача формулируется следующим образом: для всех значений параметра δ ≤ λ ≤ φ, где δ, φ — произвольные действительные числа, найти такие значения xij (i = ; j =), которые обращают в минимум функцию

при ограничениях:

Пользуясь методом потенциалов, решаем задачу при λ = δ до получения оптимального решения. Признаком оптимальности является условие:

ui + vj — [c'ij + λс"ij) ≤ 0 для незанятых клеток

и ui + vj = с' ij + λс''ij для занятых клеток,

где ui, vj — потенциалы строк, столбцов распределительной таблицы.

Условие совместимости транспортной задачи запишется в виде

Значения αij и βij определяются из условия

где u'i, v'i, u"j, v"j определяются из систем уравнений

Значения λ находятся в пределах λ1 ≤ λ ≤ λ2:

Алгоритм решения.

1) Задачу решаем при конкретном значении параметра λ = δ до получения оптимального решения.

2) Определяем αij и βij.

3) Вычисляем значения параметра λ.

4) Если λ < φ, производим перераспределение поставок и получаем новое оптимальное решение. Если λ = φ, то процесс решения окончен.

Нахождение оптимальных путей транспортировки грузов при нестабильной загрузке дорог

Имеются три поставщика однородного товара с объемами поставок: а1 = 100 т, а2 = 200 т, a3 = 100 т и четыре потребителя с объемами потребления b1 = - 80 т, b2 = 120 т, b3 = 150 т, b4 = 50 т. Стоимость транспортных расходов изменяется в определенном диапазоне в зависимости от загрузки дороги и задана матрицей

Определить оптимальное решение перевозок, обеспечивающее минимальные транспортные затраты.

Решение. В матрицу расходов введем параметр λ, где 0 ≤ λ ≤ 3. Получим

Полагая λ = 0, решаем задачу методом потенциалов, определим оптимальное решение перевозок. Распределительная таблица этого решения будет иметь вид табл. 25.5.

В таблице ui и vj — потенциалы строк и столбцов. Для занятых клеток они определяются из условия

Полагая u1 = 0, v1 + и1 = 5 + 2λ, получаем v1= 5 + 2λ,

v2 + и1 = 4 — λ, откуда v2 = 4 — λ;

v1 + u2 = 4 или 5 + 2λ + u2 = 4, откуда и2 = -1 - 2λ;

v3 + u2 = 4 + 2λ или -1 – 2λ + v3 = 4 + 2λ, v3 = 5 + 4λ.

Аналогично находим, что u3 = -1 + λ, v4 = 2 + 2λ.

Оценки свободных клеток находим по формуле

Имеем

Аналогично находим, что Δ24 = -6 + λ, Δ31 = -1 + 3λ, Δ33 = -2 + 5λ.

Решение, полученное при λ = 0, является оптимальным для всех значений параметра λ, удовлетворяющих условию

Имеем

Так как по условию задачи λ ≥ 0, то оптимальное решение сохраняется при 0 ≤ λ ≤ 1/3. При этом минимальная стоимость транспортных расходов составляет

Таким образом, при λ  [0; 1/3] L(X1)min = 1430 + 440λ и

Чтобы получить оптимальное решение при λ ≥ 1/3, перераспределим поставки товаров в клетку (3, 1), где λ2 = 1/3. Вновь полученное распределение представлено в табл. 25.6.

Находим оценки свободных клеток:

Определим пределы изменения λ:

Полученное в таблице оптимальное решение сохраняется при 1/3 ≤ λ ≤ 1/2. При этом L(X2)min = 1460 + 350λ. Итак,

Перераспределим поставки грузов в клетку (3, 3), где λ2 = 1/2. Получим новое распределение (табл. 25.7). Находим оценки свободных клеток:

Определим пределы изменения λ:

Оптимальное решение сохраняется при 1/2 ≤ λ ≤ 1. При этом L(Х3)min = 1490 + 290λ. Итак,

Перераспределим поставки товаров в клетку (1, 4), где λ2 = 1 (табл. 25.8).

Оценки свободных клеток:

Пределы изменения λ:

Полученное в предыдущей таблице оптимальное решение сохраняется при λ ≤ 7/5. При этом L(Х4)min = 1540 + 240λ. Итак,

Перераспределим поставки грузов в клетку (2, 4), где λ2 = 7/5 (табл. 25.9).

Оценки свободных клеток:

Пределы изменения λ:

Оптимальное решение сохраняется при 7/5 ≤ λ ≤ 3. При этом L(X5)min = 1890 – 10λ. Итак,

УПРАЖНЕНИЯ

Решить следующие задачи параметрического программирования с параметром в целевой функции.

25.1. L() = -λx1 — х2 → min, 1 ≤ λ ≤ 11 при ограничениях:

25.2. L() = 5x1 + (2 + 3λ)x2 → max, 0 ≤ λ ≤ 10 при ограничениях:

25.3. L() = 2x1 + (3 + 4λ)x2 → max, - < λ <  при ограничениях:

25.4. L() = (1 + λ)x1 + (2 - λ)x2 → min, -1 ≤ λ ≤ 4 при ограничениях:

25.5. L() = (3 + 3λ)x1 + 2x2 + (5 – 6λ)x3 → max, - < λ <  при ограничениях:

Решить следующие транспортные параметрические задачи.

25.6. Произвести транспортировку однородного груза с трех складов с объемами хранения 100, 200, 200 т соответственно пяти оптовым рынкам с потребностями 80, 70, 100, 150, 100 т соответственно. Стоимость транспортных расходов задана матрицей

причем стоимость перевозки груза со второго склада на четвертый рынок и с третьего склада на пятый рынок изменяется в некотором диапазоне 0 ≤ λ ≤ 2.

Определить план перевозок, обеспечивающий минимальные транспортные расходы в заданном диапазоне изменения параметра λ.

25.7. Имеются четыре поставщика однородного груза с объемами поставок 100, 70, 70, 20 т и три потребителя с объемами потребления 120, 80, 60 т. Cтоимость транспортных расходов задана матрицей

причем стоимость перевозки груза от четвертого поставщика до третьего потребителя изменяется в диапазоне 0 ≤ λ ≤ 9.

Определить оптимальный план перевозок, обеспечивающий минимальные транспортные расходы.


Экономический анализ транспортных задач