Математическое решение экономических задач

Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

История дизайна и искусства
Дизайн в машиностроении
Архитектура
Интерьеры античности и возраждения в Италии
Интерьеры XIV—XV веков и эпохи классицизма в России
Туризм
Наиболее известные парки развлечений
Софийский собор в Киеве
Архитектура Возрождения
Современная архитектура жилого здания
Архитектура водного туризма
Условия размещения туристских комплексов
Андреевская церковь
Математика
Первая четверть
Контрольная
Решение типовых задач курсовой
Математика для экономистов
Примеры решения задач контрольной работы
Математическое решение экономических задач
Сопромат
Испытание материалов на выносливость
Содержание и задачи курса
Техническая механика
Электротехника
Курсовая по электротехнике
Лабораторная работа
Баланс мощностей
Трехфазные цепи
Физика
Ядерная физика
Физика атомного ядра
Школьный курс физики
Лабораторные работы по физике
Справочник сетевого инженера
Кабельные системы
Транспортные протоколы Internet
Поддержка разных видов трафика
Таблицы маршрутизации
Витая пара
Технологии локальных сетей
Физическая структуризация сети
Поддержка разных видов трафика
Цифровое кодирование
Компрессия данных
Технология Ethernet
Технология Token Ring
Глобальные сети
Основные принципы технологии АТМ
Технология мобильных сетей
Сети на концентраторах (витой паре)
IP-сети. Адресация в IP-сетях
Таблицы маршрутизации в IP-сетях

Протокол PPP

Элементы линейного программирования Общая постановка задачи Определение. Линейное программирование — наука о методах исследования и отыскания экстремальных (наибольших и наименьших) значений линейной функции, на неизвестные которой наложены линейные ограничения. Эта линейная функция называется целевой, а ограничения, которые математически записываются в виде уравнений или неравенств, называются системой ограничений.

Элементы аналитической геометрии в n-мерном пространстве Дано n-мерное пространство, точки которого имеют координаты (x1, x2, . . . ,xп). Определение. Множество точек n-мерного пространства, координаты которых удовлетворяют уравнению где хотя бы одно из чисел а1, a2, ..., an отлично от нуля, называется гиперплоскостью п-мерного пространства.

Решение систем m линейных неравенств с двумя переменными

Графический метод Постановка задачи Наиболее простым и наглядным методом линейного программирования является графический метод. Он применяется для решения задач ЛП с двумя переменными, заданными в неканонической форме, и многими переменными в канонической форме при условии, что они содержат не более двух свободных переменных. С геометрической точки зрения в задаче линейного программирования ищется такая угловая точка или набор точек из допустимого множества решений, на котором достигается самая верхняя (нижняя) линия уровня, расположенная дальше (ближе) остальных в направлении наискорейшего роста.

Экономический анализ задач с использованием графического метода Проведем экономический анализ рассмотренной выше задачи по производству мороженого.

Симплексный метод Метод является универсальным, так как позволяет решить практически любую задачу линейного программирования, записанную в каноническом виде. Идея симплексного метода (метода последовательного улучшения плана) заключается в том, что начиная с некоторого исходного опорного решения осуществляется последовательно направленное перемещение по опорным решениям задачи к оптимальному. Значение целевой функции при этом перемещении для задач на максимум не убывает. Так как число опорных решений конечно, то через конечное число шагов получим оптимальное опорное решение. Опорным решением называется базисное неотрицательное решение.

Двойственность в линейном программировании Произвольную задачу линейного программирования можно определенным образом сопоставить с другой задачей линейного программирования, называемой двойственной. Первоначальная задача является исходной. Эти две задачи тесно связаны между собой и образуют единую двойственную пару.

Решение двойственных задач

Экономический анализ задач с использованием теории двойственности Рассмотрим задачу оптимального использования ресурсов, запишем ее математическую модель

Транспортная задача — одна из распространенных задач линейного программирования. Ее цель — разработка наиболее рациональных путей и способов транспортирования товаров, устранение чрезмерно дальних, встречных, повторных перевозок. Все это сокращает время продвижения товаров, уменьшает затраты предприятий, фирм, связанные с осуществлением процессов снабжения сырьем, материалами, топливом, оборудованием и т.д.

Альтернативный оптимум в транспортных задачах Признаком наличия альтернативного оптимума в транспортной задаче является равенство нулю хотя бы одной из оценок свободных переменных в оптимальном решении (Xопт1).Сделав перераспределение грузов относительно клетки, имеющей Δij = 0, получим новое оптимальное решение (Хопт2), при этом значение целевой функции (транспортных расходов) не изменится.

Вырожденность в транспортных задачах При решении транспортной задачи может оказаться, что число занятых клеток меньше, чем m + п - 1. В этом случае задача имеет вырожденное решение. Для возможного его исключения целесообразно поменять местами поставщиков и потребителей или ввести в свободную клетку с наименьшим тарифом нулевую поставку. Нуль помещают в такую клетку, чтобы в каждой строке и каждом столбце было не менее одной занятой клетки.

Экономический анализ транспортных задач Проведем экономический анализ задачи на конкретном примере.

Выбор оптимального варианта использования производственного оборудования На предприятии имеются три группы станков, каждая из которых может выполнять пять операций по обработке деталей (операции могут выполняться в любом порядке). Максимальное время работы каждой группы станков соответственно равно 100, 250, 180 ч. Каждая операция должна выполняться соответственно 100, 120, 70, 130 ч.

Целочисленное программирование Общая формулировка задачи Некоторые задачи линейного программирования требуют целочисленного решения. К ним относятся задачи по производству и распределению неделимой продукции (выпуск станков, телевизоров, автомобилей и т.д.).

Прогнозирование эффективного использования производственных площадей Рассмотрим следующую задачу. Для улучшения финансового положения фирма приняла решение об увеличении выпуска конкурентоспособной продукции, для чего принято решение об установке в одном из цехов дополнительного оборудования, занимающего 19/3 м2 площади. На приобретение дополнительного оборудования фирма выделила 10 усл. ед., при этом она может купить оборудование двух видов. Приобретение 1-го комплекта оборудования 1-го вида стоит 1,0 усл. ед., 2-го вида — 3 усл. ед.

Параметрическое линейное программирование

Определение диапазона оптимального решения выпуска продукции при изменении условий реализации

Транспортная параметрическая задача

Задача о назначениях Задача заключается в выборе такого распределения ресурсов по объектам, при котором минимизируется стоимость назначений. Предполагается, что каждый ресурс назначается ровно один раз и каждому объекту приписывается ровно один ресурс.

Планирование загрузки оборудования с учетом максимальной производительности станков

Задачи с несколькими целевыми функциями Формулировка задачи В рассматриваемых выше задачах линейного программирования математические модели имели одну целевую функцию, для которой находилось максимальное или минимальное значение экономического показателя. Однако на практике часто требуется найти экстремальные значения нескольких экономических показателей. В этом случае математическая модель имеет несколько целевых функций, причем некоторые из них требуют нахождения максимального, а другие — минимального значений. Поэтому ставится задача нахождения такого компромиссного (субоптимального) решения модели, в котором значения всех рассматриваемых экономических показателей были бы приближены к экстремальным значениям.

Элементы оптимального управления Нелинейное программирование

Дробно-линейное программирование Математическая модель задачи Дробно-линейное программирование относится к нелинейному программированию, так как имеет целевую функцию, заданную в нелинейном виде.

Метод множителей Лагранжа

Динамическое программирование — один из разделов оптимального программирования, в котором процесс принятия решения и управления может быть разбит на отдельные этапы (шаги). Экономический процесс является управляемым, если можно влиять на ход его развития. Под управлением понимается совокупность решений, принимаемых на каждом этапе для влияния на ход развития процесса. Например, выпуск продукции предприятием — управляемый процесс. Совокупность решений, принимаемых в начале года (квартала и т.д.) по обеспечению предприятия сырьем, замене оборудования, финансированию и т.д., является управлением. Необходимо организовать выпуск продукции так, чтобы принятые решения на отдельных этапах способствовали получению максимально возможного объема продукции или прибыли.

Сетевые модели До появления сетевых методов планирование работ, проектов осуществлялось в небольшом объеме. Наиболее известным средством такого планирования был ленточный график Ганта, недостаток которого состоит в том, что он не позволяет установить зависимости между различными операциями. Современное сетевое планирование начинается с разбиения программы работ на операции. Определяются оценки продолжительности операций, и строится сетевая модель (график). Построение сетевой модели позволяет проанализировать все операции и внести улучшения в структуру модели до начала ее реализации. Строится календарный график, определяющий начало и окончание каждой операции, а также взаимосвязи с другими операциями графика. Календарный график выявляет критические операции, которым надо уделять особое внимание, чтобы закончить все работы в директивный срок. Что касается некритических операций, то календарный план позволяет определить резервы времени, которые можно выгодно использовать при задержке выполнения работ или эффективном применении как трудовых, так и финансовых ресурсов.

Минимизация сети

Принятие решений и элементы планирования Основные понятия теории игр В экономике иногда приходится сталкиваться с ситуацией, когда при наличии многих участников эффективность решения одного из них зависит от того, какие решения приняли другие участники. Например, доход предприятия от продажи изделия зависит не только от установленной на него цены, но и от количества купленных покупателем изделий. Или при выборе ассортимента товаров, выпускаемых предприятием, нужно учитывать, какой ассортимент товаров выпускают другие предприятия.

Решение игр (aij)mxn с помощью линейного программирования Теория игр находится в тесной связи с линейным программированием, так как каждая конечная игра двух лиц с нулевой суммой может быть представлена как задача линейного программирования и решена симплексным методом и, наоборот, задача линейного программирования может быть представлена как игра.

Игры с "природой" В рассмотренных выше матричных играх предполагалось, что в них принимают участие два игрока, интересы которых противоположны. Поэтому действия каждого игрока направлены на увеличение выигрыша (уменьшение проигрыша). Однако в некоторых задачах, приводящихся к игровым, имеется неопределенность, вызванная отсутствием информации об условиях, в которых осуществляется действие (погода, покупательский спрос и т.д.). Эти условия зависят не от сознательных действий другого игрока, а от объективной действительности. Такие игры называются играми с природой. Человек в играх с природой старается действовать осмотрительно, второй игрок (природа, покупательский спрос) действует случайно.

"Дерево" решений Примеры, которые мы рассматривали до сих пор, включали получение единого решения. Однако на практике результат одного решения приводит к необходимости принятия следующего решения и т.д. Эту последовательность принятия решений нельзя выразить таблицей доходов, поэтому приходится использовать другой алгоритм принятия управленческих решений. Графически подобные процессы могут быть представлены с помощью "дерева" решений. Такое представление облегчает описание многоэтапного процесса принятия управленческого решения в целом. Рассмотрим "дерево" решений, которое применяют тогда, когда нужно принять несколько взаимосвязанных решений в условиях неопределенности в случае принятия решения, зависящего от исхода предыдущего или исходов испытаний.

Элементы системы массового обслуживания Формулировка задачи и характеристики СМО Часто приходится сталкиваться с такими ситуациями: очередь покупателей в кассах магазинов; колонна автомобилей, движение которых остановлено светофором; ряд станков, вышедших из строя и ожидающих ремонта, и т.д. Все эти ситуации объединяет то обстоятельство, что системам необходимо пребывать в состоянии ожидания. Ожидание является следствием вероятностного характера возникновения потребностей в обслуживании и разброса показателей обслуживающих систем, которые называют системами массового обслуживания (СМО).

СМО с неограниченным ожиданием

Определение эффективности использования трудовых и производственных ресурсов в системах массового обслуживания

Некоторые модели управления запасами Предприятия, фирмы имеют различные запасы: сырье, комплектующие изделия, готовую продукцию, предназначенную для продажи, и т.д. Совокупность подобных материалов, представляющих временно не используемые экономические ресурсы, называют запасами предприятия.

Модель производственных запасов В основной модели предполагали, что поступление товаров на склад происходит мгновенно, например в течение одного дня. Рассмотрим случай, когда готовые товары поступают на склад непосредственно с производственной линии. Будем считать, что поступление товаров происходит непрерывно. Модель задачи в этом случае называют моделью производственных поставок. Обозначим через р скорость поступающего на склад товара. Эта величина равна количеству товаров, выпускаемых производственной линией за год. Остальные обозначения и предположения те же, что и для основной модели управления запасами.

Практикум

Задания по теме "Математический анализ, функции одной переменной"

Задания по теме Обыкновенные дифференциальные уравнени

Задания по теме Элементы теории вероятностей

Задания по теме "Элементы теории вероятностей"

Задания по теме "Линейное программирование"

Задания по теме "Нелинейное программирование"

Задания по теме "Сетевые модели

 

На главную